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Leaving mathematical sophistication aside, this document briefly outlines the theory of support vectors and the concept of
margin. It is a very condensed version of parts of chapters 1, 2, 7 and 9 of “Learning with Kernels” by Schölkopf and Smola,
2002. Kernel functions are not explained and merely assumed to be useful for non-linear solutions in input space. Support
Vector Machines make heavy use of Lagrangians to solve constrained optimization problems. However, this technique is also
not explained in detail here.

If not explicitly stated otherwise, i, j always run over 1, . . . , m.

1 Optimal margin hyperplanes

Consider the class of hyperplanes 〈w,x〉+ b = 0 corresponding to binary decision functions

sgn(〈w,x〉+ b). (1)

Based on empirical training data (xi, yi),xi ∈ Rn, y ∈ {−1, 1}, one can find a unique optimal hyperplane which is
the solution of the following optimization problem:

max
w,b

min
i
{||x− xi|| |〈w,x〉+ b = 0}. (2)

In words: find the hyperplane that has maximum distance to the nearest training vectors (support vectors). This
can be achieved by minimizing w using the objective function

min
w

1
2
||w||2, (3)

subject to
yi(〈w,xi〉+ b) ≥ 1. (4)

The left-hand side of (4) divided by ||w|| gives the distance between xi and the hyperplane and minimizing ||w||
thus maximizes this distance, called margina. The following Lagrangian can be used to solve this optimization
problem:

L(w, b,α) =
1
2
||w||2 −

∑

i

αi(yi(〈w,xi〉+ b)− 1) (5)

We want the solution that maximizes (5) over the αi and minimizes (5) over w, b. The αi (primal variables) are
weights for the xi. If xi violates (4) then (5) can be increased by increasing αi. Therefore, w and b will have
to change to satisfy more constraints and decrease ||w||. Note that the αi for which the xi fulfill (4) but are not
precisely met as equalities have to be 0 to maximize (5), i.e. only the support vectors have non-zero α-weights.

Lagrangians are solved by finding zero points of their partial derivatives (saddle point condition). It is instructive
to calculate d

dbL(w, b,α) = 0 and d
dwL(w, b,α) = 0 manuallyb. This leads to

∑

i

αiyi = 0, (6)

and
w =

∑

i

αiyixi, (7)

aNote that all support vectors then have distance of 1
||w|| to the hyperplane.

bThe reason why (3) not directly minimizes ||w|| will become clear here.
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repectively. The derivative (7) implies that the solution vector has an expansion in terms of some training vectors,
namely those with non-zero α-weight: the support vectors. Substituting (6) and (7) into (5) yields

max
α

W (α) =
∑

i

αi − 1
2

∑

i,j

αiαjyiyj〈xi,xj〉, (8)

subject to αi ≥ 0 and
∑

i αiyi = 0, cf. (6), the dual optimization problem. In practice, however, the kernel trick is
used, modifying (8) toc

max
α

W (α) =
∑

i

αi − 1
2

∑

i,j

αiαjyiyjk(xi, xj). (9)

Using a kernel function lifts the algorithm to a higher dimensional feature space, thus enabling a non-linear solution
in input space. The decision function (1) can be rewritten due to (7) and the kernel trick into

f(x) = sgn(
∑

i

αiyik(xi, x) + b). (10)

To estimate b, one can make use of the fact that only support vectors have non-zero α-weight (KKT conditions):

yj =
∑

i

αiyik(xi, x) + b. (11)

Thus, b can be obtained by e.g. averaging over all yj , which completes the decision function.

2 Soft margin hyperplanes

2.1 The important role of the margin

If a seperating hyperplane does not exist, the constraint (4) has to be relaxed with slack variables ξi:

yi(〈w,xi〉+ b) ≥ 1− ξi, (12)

subject to ξi ≥ 0. The idea is to allow points to lie within the margin or being misclassified to improve robustness
towards outliers.

Soft margin hyperplanes are a generalization of optimal margin hyperplanes. The support vectors for the latter lie
exactly on the margin (the rest contributes nothing to the solution), while for the former, support vectors are also
allowed to lie inside the margin. The latter support vectors are called margin errors.

To allow for margin errors, we will see that the α-values have to be constrained, i.e. 0 ≤ αi ≤ b for some upper
bound b. If αi = b (or αi = 0), we call αi at bound.

2.2 C-SVC

To allow for margin errors modify the objective function (3) to

min
w,ξi

1
2
||w||2 +

C

m

∑

i

ξi, (13)

subject to (12), where C > 0 determines the tradeoff between margin maximization and error minimization.
Transforming this into a dual yields again (9), but subject to the new constraints 0 ≤ αi ≤ C

m and
∑

i αiyi = 0.
The solution can also be shown to have expansion (7) and decision function (10). The threshold b can be evaluated
as in (11), too, but only for support vectors xi (defined by meeting the equality of (12)) which additionally have
ξi = 0, i.e. that sit directly on the edge of the margin.

cNote that the xi need not be vectors from an inner-product space anymore, extending the approach to all inputs that a positive
definite kernel function k is defined for.
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2.3 ν-SVC

The parameter C is rather unintuitive and hard to choose a priori. A modification is the following objective
function, governed by a parameter ν:

min
w,ξi,ρ,b

1
2
||w||2 − νρ +

1
m

∑

i

ξi, (14)

subject to the constraints yi(〈xi,w〉+ b) ≥ ρ− ξi and ξi ≥ 0, as well as ρ ≥ 0. To understand the role of ρ, observe
that for ξ = 0 the first constraint states that the two classes be separated by a margin of width 2ρ

||w|| .

The problem can be formulated as the corresponding Lagrangian

1
2
||w||2 − νρ +

1
m

∑

i

ξi −
∑

i

(αi(yi(〈xi,w〉+ b)− ρ + ξi) + βiξi)− δρ. (15)

Setting the partial derivatives for the four primal variables w, ξ, b, ρ to 0 yields the four Lagrangian constraints
w =

∑
i αiyixi, αi + βi = 1

m ,
∑

i αiyi = 0 and
∑

i αi − δ = ν. Injection of those constraints into (15) yields

max
α

W (α) = −1
2

∑

i,j

αiαjyiyjk(xi, xj), (16)

subject to 0 ≤ αi ≤ 1
m ,

∑
i αiyi = 0 and

∑
i αi ≥ ν. The solution can also be shown to have decision function (10).

If a ν-SVC run yields a positive margin (ρ > 0, and therefore
∑

i αi = ν according to the fourth Lagrangian
constraint), then ν is

• an upper bound on the fraction of margin errors: each αi can be at most 1
m and only a fraction ν of the

examples can have this α-value, which all margin errors do.

• also a lower bound on the fraction of support vectors: since every sv can have an alpha-value of at most 1
m ,

there must be at least νm of them (including margin errors which are also support vectors).

However, for large datasets, the fraction of support vectors sitting directly on the margin can be neglected and the
two numbers converge.

3 SV-Regression

To model quantitative targets, proceed analogous to the qualitative case. At each point, allow an error ε. Everything
above ε is covered in slack variables ξ

(∗)
i , which are penalized in the objective function d. Specifically, for y ∈ R,

use the ε-insensitive loss function to preserve sparse representation of the solution:

|y − f(x)|ε = max{0, |y − f(x)| − ε} (17)

This takes the form of the normal | · | function with y-intercept of −ε, but with a zero-error-tube of width ε around
the center. Therefore, errors inside the tube are not penalized. Note, that this “swaps” the penalization area:
now the margin errors lie in the area outside the tube. Consequently, points inside the tube do not appear in the
extension of the solution.

dThe notation x(∗) references the variables x and x∗ at the same time.
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3.1 ε-SVR

For a fixed ε, the corresponding constrained optimization problem is analogous to ε-SVC given by

min
w,ξ(∗),b

1
2
||w||2 + C

1
m

∑

i

(ξi + ξ∗i ), (18)

subject to

(〈w,xi〉+ b)− yi ≤ ε + ξi,

(yi − 〈w,xi〉+ b) ≤ ε + ξ∗i ,

ξ
(∗)
i ≥ 0.

(19)

Note, that for |〈w,xi〉+ b)− yi| ≤ ε, we have ξ
(∗)
i = 0. Transforming (18) and constraints (19) into a Lagrangian

yields

1
2
||w||2 +

C

m

∑

i

(ξi + ξ∗i )−
∑

i

(ηiξi + η∗i ξ∗i )

−
∑

i

αi(ε + ξi + yi − 〈w,xi〉 − b)

−
∑

i

α∗i (ε + ξi − yi + 〈w,xi〉+ b),

(20)

which must be minimized with respect to the primal variables w, b, ξ
(∗)
i and maximized with respect to the dual

variables α
(∗)
i . Hence, the saddle point condition yields the three constraints

∑
i(αi−α∗i ) = 0, w−∑

i(α
∗
i−αi)xi = 0

and C
m − α

(∗)
i − η

(∗)
i = 0 which can be inserted into (20), yielding the following dual problem:

max
α(∗)

− 1
2

∑

i,j

(α∗i − αi)(α∗j − αj)〈xi,xj〉

− ε
∑

i

(α∗i + αi) +
∑

i

yi(α∗i − αi),
(21)

subject to
∑

i(αi − α∗i ) = 0 and α
(∗)
i ∈ [0, C

m ]. The solution has again an expansion in terms of support vectors:

f(x) =
∑

i

(α∗i − αi)〈x,xi〉+ b. (22)

At the point of solution, due to the KKT conditions, the product between dual variables and constraints has to
vanish:

αi(ε + ξi − yi + 〈w,xi〉+ b) = 0 and
α∗i (ε + ξ∗i + yi − 〈w,xi〉 − b) = 0 ,

(23)

as well as

(
C

m
− αi) ξi = 0 and

(
C

m
− α∗i ) ξ

(∗)
i = 0.

(24)

The parameter ε has taken the role of the margin parameter ρ here. Support vectors lie either directly on the edge
of the tube or outside the tube.

Condition (23) allows to compute b by exploiting the former points, i.e. the cases where 0 < α
(∗)
i < C

m due to the
second factor of (23) being 0, but additionally ξ

(∗)
i = 0 holds for these cases, too. Furthermore, conclude that only

points with α
(∗)
i = C

m can have ξ
(∗)
i > 0, i.e. can lie outside the tube and there is no i for which αi > 0 and α∗i > 0

(c.f. proof in section 4).
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3.2 ν-SVR

Instead of using a fixed ε, optimize ε. Use as objective function:

min
w,ξ(∗),ε,b

1
2
||w||2 + C (νε +

1
m

∑

i

(ξi + ξ∗i )), (25)

subject to

(〈w,xi〉+ b)− yi ≤ ε + ξi,

(yi − 〈w,xi〉+ b) ≤ ε + ξ∗i ,

ξ
(∗)
i ≥ 0,

ε ≥ 0.

(26)

Note the similarity to ε-SVR. Transforming (25) and constraints (26) into a Lagrangian yields

1
2
||w||2 + Cνε +

C

m

∑

i

(ξi + ξ∗i )−
∑

i

(ηiξi + η∗i ξ∗i )

−
∑

i

αi(ε + ξi + yi − 〈w,xi〉 − b)

−
∑

i

α∗i (ε + ξi − yi + 〈w,xi〉+ b)

(27)

The saddle point condition yields this time the shorter dual:

max
α(∗)

− 1
2

∑

i,j

(α∗i − αi)(α∗j − αj)〈xi,xj〉

+
∑

i

yi(α∗i − αi),
(28)

subject to
∑

i(αi − α∗i ) = 0, α
(∗)
i ∈ [0, C

m ] and
∑

i(αi + α∗i ) ≤ Cv.

Again, b and this time also ε can be computed using the KKT conditions (23), i.e. computing thickness and vertical
position of the tube by using points that sit exactly on the border of the tube.

Again, ν is

• an upper bound on the fraction of margin errors

• a lower bound on the fraction of support vectors

The formal proof is analogous to the corresponding proof of ν-SVC, however, the following “sloppy” argumentation
is more instructive:
The first statement can be seen by observing that, for increasing ε, the first term in νε + 1

m

∑
i(ξi + ξ∗i ) increases

proportionally to ν (i.e. with constant gradient g1 = ν), while the second term decreases (monotonically and)
proportionally to the fraction of margin errors h1 (the points on the edge of the tube cost nothing), inducing a
varying gradient g2 = −h1. Since the terms are added up, a minimum of the sum can not be found until g1 +
g2 = 0 (the combined gradient is the sum of the single gradients), i.e. h1 = ν.
Analogously, for the second statement, observe that, for decreasing ε, the first term decreases with gradient −ν
while the second term increases (monotonically and) with a gradient that equals the fraction of support vectors
(the points on the edge gain nothing) and which must reach ν for the minimum.
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4 Proofs

4.1 Problem 9.1

For ε > 0 the solution of the ε-SVR dual satisfies αiα
∗
i = 0: Assume the contrary, i.e. αi > 0 and α∗i > 0 for ε > 0.

It follows from (23) that

(i) ε + ξi = yi − 〈w,xi〉 − b and
(ii) ε + ξ∗i = 〈w,xi〉+ b− yi.

Inserting (ii) in (i) by substituting yi yields

ε + ξi = −ε− ξ∗i ⇔
ε = −1

2
(ξi + ξ∗i ).

Since ξ
(∗)
i ≥ 0, it follows that ε ≤ 0, which is a contradiction.


