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Abstract. Pattern mining methods for graph data have largely been
restricted to ground features, such as frequent or correlated subgraphs.
Kazius et al. have demonstrated the use of elaborate patterns in the
biochemical domain, summarizing several ground features at once. Such
patterns bear the potential to reveal latent information not present in
any individual ground feature. However, those patterns were handcrafted
by chemical experts. In this paper, we present a data-driven bottom-up
method for pattern generation that takes advantage of the embedding
relationships among individual ground features. The method works fully
automatically and does not require data preprocessing (e.g., to intro-
duce abstract node or edge labels). Controlling the process of generating
ground features, it is possible to align them canonically and merge (stack)
them, yielding a weighted edge graph. In a subsequent step, the subgraph
features can further be reduced by singular value decomposition (SVD).
Our experiments show that the resulting features enable substantial per-
formance improvements on chemical datasets that have been problematic
so far for graph mining approaches.

1 Introduction

Graph mining algorithms have focused almost exclusively on ground features
so far, such as frequent or correlated substructures. In the biochemical domain,
Kazius et al. [6] have demonstrated the use of more elaborate patterns that can
represent several ground features at once. Such patterns bear the potential to
reveal latent information which is not present in any individual ground feature.
To illustrate the concept of non-ground features, Figure 1 shows two molecules,
taken from a biochemical study investigating the ability of chemicals to cross the
blood-brain barrier, with similar gray fragments in each of them (in fact, due
to symmetry of the ring structure, the respective fragment occurs twice in the
second molecule). Note that the fragments are not completely identical, but differ
in the arrow-marked atom (nitrogen vs. oxygen). However, regardless of this
difference, both atoms have a strong electronegativity, resulting in a decreased
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Fig. 1. Two molecules with strong polarity, induced by similar fragments (gray).

ability to cross membranes in the body, such as the blood-brain barrier. So far,
the identification of such patterns requires expert knowledge [6] or extensive
pre-processing of the data (annotating certain nodes or edges by wildcards or
specific labels) [3].

We present a modular graph mining algorithm to identify higher level (latent)
and mechanistically interpretable motifs for the first time in a fully automated
fashion. Technically, the approach is based on so-called alignments of features,
i.e. orderings of nodes and edges with fixed positions in the structure. Such
alignments may be obtained for features by controlling the feature generating
process in a graph mining algorithm with a canonical enumeration strategy. This
is feasible, for instance, on top of current a-priori based graph mining algorithms.
Subsequently, based on the canonical alignments, ground features can be stacked
onto each other, yielding a weighted edge graph (see the left and middle panel of
Figure 2). In a final step, the weighted edge graph is reduced again (in our case
by singular value decomposition) to reveal the latent structure of the feature (see
the right panel of Figure 2). In summary, we execute a pipeline with the steps
(a) align, (b) stack, and (c) compress. A schematic overview of the algorithm,
called LAST-PM (Latent Structure Pattern Mining) in the following, is shown
in Figure 2 (from left to right).

The goal of LAST-PM is to find chemical substructures that are chemically
meaningful (further examples not shown due to lack of space) and ultimately
useful for prediction. More specifically, we compare LAST-PM favorably to the
complete set of ground features from which they were derived in terms of clas-
sification accuracy and feature count (baseline comparison), while the tradeoff
between runtime and feature count reduction remains advantageous. We also
compare accuracy to other state-of-the-art compressed and abstract representa-
tions. Finally, we present the results for QSAR endpoints for which data min-
ing approaches have not reached the performance of classical approaches (using
physico-chemical properties as features) yet: bioavailability [12] and the ability
to cross the blood-brain barrier [7, 4]. Our results suggest that graph mining
approaches can in fact reach the performance of approaches that require the
careful selection of physico-chemical properties on such data.

The remainder of the paper is organized as follows: Section 2 will intro-
duce the graph-theoretic concepts needed to explain the approach. In Section 3,
we will present the workflow and basic components (conflict detection, conflict
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a) b) c)

Fig. 2. Illustration of the pipeline with the three steps (a) align, (b) stack, and (c)
compress. Left: Aligned ground features in the partial order. Center: Corresponding
weighted graph. Right: Latent structure graph.

resolution, the stopping criterion and calculating the latent structure graph).
Section 4 discusses the algorithm and also briefly the output of the method.
Subsequently, we will present experimental results on blood-brain barrier, estro-
gen receptor binding and bioavailability data, and compare against other types
of descriptors. Finally, we will discuss LAST-PM in the context of related work
(Section 6) and come to our conclusions (Section 7).

2 Graph Theory and Concepts

We assume a graph database R = (r, a), where r is a set of undirected, labeled
graphs, and a : r → {0, 1} is a function that assigns a class value to every
graph (binary classification). Graphs with the same classification are collectively
referred to as target classes. Every graph is a tuple r = (V,E,Σ, l), where l :
V ∪ E → Σ is a label function for nodes and edges. An alignment of a graph
r is a bijection φr : (V,E) → P , where P is a set of distinct, strictly ordered,
identifiers of size n = |V | + |E|, such as (pairs of) natural numbers. Thus, the
alignment function applies to both nodes and edges. We use the usual notion of
edge-induced subgraph, denoted by ⊆. If r′ ⊆ r, then r′ is said to cover r. This
induces a partial order on graphs, the more-general-than relation “�”, which is
commonly used in graph mining: for any graphs r, r′, s,

r′ � r, if r ⊆ s ⇒ r′ ⊆ s. (1)

Subgraphs are also referred to as (ground) features. The subset of r that a
feature r covers is referred to as the occurrences of r, its size as support of r in r.
A node refinement is an addition of an edge and a node to a feature r. Given a
graph r with at least two edges, a branch is a node refinement that extends r at
a node adjacent to at least two edges. Two (distinct) features obtained by node
refinements of a specific parent feature are called siblings. Two aligned siblings
r and s are called mutually exclusive, if they branch at different locations of
the parent structure, i.e. let vi and vj be the nodes where the corresponding
node refinements are attached in the parent structure, then φr(vi) 6= φs(vj).
Conversely, two siblings r and s are called conflicting, if they refine at the same
location of the parent structure.
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Fig. 3. Left: Conflicting siblings c12 and c21. Right: Corresponding partial order.

For several ground features, alignments can be visualized by overlaying or
stacking the structures. It is possible to count the occurrences of every compo-
nent (identified by its position), inducing a weighted graph. Assume a collection
of aligned ground features with occurrences significantly skewed towards a single
target class, as compared to the overall activity distribution. A “heavy” com-
ponent in the associated weighted graph is then due to many ground features
significant for a specific target class. Assuming correct alignments, the iden-
tity of different components is guaranteed, hence multiple adjacent components
with equal weight can be considered equivalent in terms of their classification
potential.

Figure 2 illustrates the pipeline consisting of the three steps (a) align, (b)
stack, and (c) compress, which exploits these relationships. It shows aligned
ground features a, a11, a12, a13, a21, and a22 in the partial order (search tree)
built by a depth-first algorithm. The aligned features can be stacked onto each
other, yielding a weighted edge graph. Subsequently, latent information (such as
the main components) can be extracted by SVD. Inspecting the partial order,
we note that refining a branches the search due to the sibling pair a11 and a21.
Siblings always induce a branch in the partial order. Note that the algorithm
will have to backtrack to the branching positions.

However, in general, the proposed approach is not directly applicable. In
contrast to a11 and a21, which was a mutually exclusive pair, Figure 3 shows
a conflicting sibling pair, c12 and c21, together with their associated part of
the partial order (matching elements are drawn on corresponding positions). It
is not clear a priori, how conflicting features could be stacked, thus a conflict
resolution mechanism is necessary.

The introduced concepts (alignment, conflicts, conflict resolution, and stack-
ing) will now be used in the workflow and algorithm of LAST-PM.

3 Workflow and Basic Steps

In this section, we will elaborate on the main steps of latent structure pattern
mining:

1. Ground features are repeatedly stacked, resolving conflicts as they occur. A
pattern representing several ground features is created.

2. The process in step 1. is bounded by a criterion to prevent the incorporation
of too diverse features.
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id label
0 7
1 6
2 8
3 6
4 6
5 6
6 8
7 8

id1 id2 label
0 1 1
0 6 1
0 7 2
1 2 1
2 3 1
3 4 2
4 5 1

(a) a11 node and edge lists

id label
0 7
1 6
2 8
3 6
4 6
5 6
6 8
7 6

id1 id2 label
0 1 1
0 6 1
1 2 1
2 3 1
3 4 2
3 7 1
4 5 1

(b) a21 node and edge lists

Fig. 4. Node and edge lists for conflicting nodes c12 and c21, sorted by id (position).
Underlined entries represent core nodes and adjacent edges.

3. The components with the least information are removed from the structure
obtained after step 2. Then the result (latent structure) is returned.

In the following, we describe the basic components of the approach in some
detail.

3.1 Efficient Conflict Detection

We detect conflicts based primarily on edges and secondarily on nodes. A node
list is a vector of nodes, where new nodes are added to the back of the vector
during the search. The edge list first enumerates all edges emanating from the
first node, then from the second, and so forth. For each specific node, the order
of edges is also maintained. Note, that for this implementation of alignment,
the ground graph algorithm must fulfill certain conditions, such as partial order
on the ground features as well as canonical enumeration (see Section 4). In the
following, the core component of two siblings denotes their maximum subgraph,
i.e. the parent.

Figure 4 shows lists for features a11 and a21, representing the matching
alignment. Underlined entries represent core nodes and adjacent edges. In line
with our previous observations, no distinct nodes and no distinct edges have
been assigned the same position, so there is no conflict. The node refinement
involving node identifier 7 has taken place at different positions. This would be
different for the feature pair c12/c21.

Due to the monotonic addition of nodes and edges to the lists, conflicts
between two ground features become immediately evident through checking cor-
responding entries in the alignment for inequality. Three cases are observed:

1. Edge lists of f1 and f2 do not contain exactly the same elements, but all rows
with identical positions, i.e. pairs of ids, are equal. This does not indicate a
conflict.

2. There exists a row in each of the lists with the same position that differs in
the label. This indicates a conflict.
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Fig. 5. Conflict resolution by logical OR.

3. No difference is observed between the edge lists at all. This indicates a con-
flict, since the difference is in the node list (due to double-free enumeration,
there must be a difference).

For siblings a11 and a21, case 1. applies, and for c12 and c21, case 2. applies.
A conflict is equivalent to a missing maximal feature for two aligned search
structures (see Section 3.2). Such conflicts arise through different embeddings
of the conflicting features in the database instances. Small differences (e.g., a
difference by just one node/edge), however, should be generalized.

3.2 Conflict Resolution

Let r and s be graphs. A maximum refinement m of r and s is defined as
(r � m) ∧ (s � m) ∧ (∀n � r : m � n) ∧ (∀o � s : m � o).

Lemma 1. Let r and s be two aligned graphs. Then the following two configu-
rations are equivalent:

1. There is no maximum refinement m of r and s with alignment φm induced
by φr and φs, i.e. φm ⊇ φr ∪ φs.

2. A conflict occurs between r and s, i.e. either
(a) vi 6= vj for nodes vi ∈ r and vj ∈ s with φr(vi) = φs(vj), or
(b) ei 6= ej for edges ei ∈ r and ej ∈ s with φr(ei) = φs(ej).

Proof. Two directions:
“1. ⇒ 2.”: Assume the contrary. Then the alignments are compatible, i.e. no
unequal nodes vi 6= vj or edges ei 6= ej are assigned the same position. Thus,
there is a common maximum feature m with φm ⊇ φr ∪ φs.
“1. ⇐ 2.”: Since φ is a bijection, there can be at most one value assigned by φ
for every node and edge. However, the set φm ⊇ φr ∪ φs violates this condition
due to the conflict. Thus, there is no m with φm ⊇ φr ∪ φs.

In Figure 3, the refinements of c11 have no maximum element, since they
include conflicting ground features c12 and c21. In contrast, refinements of a in
Figure 2 do have a maximum element (namely feature a13).

As a consequence of Lemma 1, conflicts prove to be barriers when we wish
to merge several features to patterns, especially in case of patterns that stretch
beyond the conflict position. A way to resolve conflicts and to incorporate two
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Fig. 6. Contour map of χ2 values for a balanced class distribution and possible values
for a refinement path.

conflicting features in a latent feature is by logical OR, i.e. any of the two labels
may be present for a match. For instance, c12 and c21 can be merged by allowing
either single or double bond and either node label of {N,C} at the conflicting
edge and node, as shown in Figure 5, represented by a curly edge and multiple
node labels.

Conflicts and mutually exclusive ground features arise from different em-
beddings of the features in the database, i.e. the anti-monotonic property of
diminishing support is lost between pairs of conflicting or mutually exclusive
features. This also poses a problem for directly calculating the support of latent
patterns.

3.3 Stopping Criterion

Since the alignment, and therefore equal and unequal parts, are induced by the
partial order of the mining process, which is in turn a result of the embeddings of
ground features in the database, we employ those to mark the boundaries within
which merging should take place. Given a ground feature f , its support in the
positive class is defined as y = |{r ∈ r | covers(f, r) ∧ a(r) = 1}|, its (global)
support as x. We use χ2 values to bound the merging process, since they incor-
porate a notion of weight : a pattern with low (global) support is downweighted,
whereas the occurrences of a pattern with high support are similar to the overall
distribution. Assuming n = |r| the number of graphs, define the weight of a fea-
ture as w = x

n
. Moreover, assuming m = {r ∈ r |a(r) = 1}, define the expected

support in the positive [negative] class as wm [w(n−m)]. The function

χ2

d(x, y) =
(y − wm)2

m
+

(x− y − w(n−m))2

w(n−m)
(2)

calculates the χ2 value for the distribution test as the sum of squares of devia-
tion from the expected support for both classes. Values exceeding 3.84 (≈ 95%
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1 2 3 4 5 6 7 8 9 10

1 0 5 0 0 0 0 0 0 0 0

2 5 0 5 0 0 0 0 3 0 0

3 0 5 0 5 0 0 0 0 0 0

4 0 0 5 0 5 0 0 0 0 0

5 0 0 0 5 0 5 0 0 4 0

6 0 0 0 0 5 0 5 0 0 0

7 0 0 0 0 0 5 0 0 0 0

8 0 3 0 0 0 0 0 0 0 0

9 0 0 0 0 4 0 0 0 0 2

10 0 0 0 0 0 0 0 0 2 0

(a) Weighted original adjacency matrix.

1 2 3 4 5 6 7 8 9 10

1 0 4 0 0 0 0 0 0 0 0

2 4 0 5 0 0 0 0 3 0 0

3 0 5 0 4 0 0 0 0 0 0

4 0 0 4 0 5 0 0 0 0 0

5 0 0 0 5 0 5 0 0 3 0

6 0 0 0 0 5 0 4 0 0 0

7 0 0 0 0 0 4 0 0 0 0

8 0 3 0 0 0 0 0 0 0 0

9 0 0 0 0 3 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0

(b) Latent structure adjacency matrix.

Fig. 7. Input (left) and output (right) of latent structure graph calculation, obtained
by aligning the features a11− a22.

significance for 1df) are considered significant. Here, we consider significance for
each target class individually. Thus, a significant feature f is correlated to ei-
ther (a) the positive class, denoted by f⊕, if y > wm, or (b) the negative class,
denoted by f⊖, if x− y > w(n−m).

Definition 1. Patch
Given a graph database R = {r, a}, a patch P is a set of significant ground
features, where for each ground feature f there is a ground feature in P that is
either sibling or parent of f , and for each pair of ground features (fX , gY ) : X =
Y , X,Y ∈ {⊕,⊖}.

The contour map for equally balanced target classes, a sample size of 20 and
occurrence in half of the compounds in Figure 6 illustrates the (well-known)
convexity of the χ2 function and a particular refinement path in the search tree
with features partially ordered by χ2 values as 1⊖ > 2 < 3 < 4⊕ < 5⊕.

3.4 Latent Structure Graph Calculation

In order to find the latent (hidden) structures, a “mixture model” for ground
features can be used, i.e. elements (nodes and edges) are weighted by the sum
of ground features that contain this element. It is obtained by stacking the
aligned features of a specific patch, followed by a compression step. To extract
the latent information, singular value decomposition (SVD) can be applied. It is
recommended by Fukunaga to keep 80%− 90% of the information [2].

The first step is to count the occurrences of the edges in the ground features
and put them in an adjacency table. For instance, Table 7(a) shows the pattern
that results from the aligned features a11, a12, a13, a21, and a22 (see Figure
2). As a specific example, edge 1 − 2 was present in all five ground features,
whereas edge 9 − 10 occurred in two features only. We applied SVD with 90%
to the corresponding matrix and obtained the latent structure graph matrix in
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Figure 7(b). Here, we removed spurious edges that were introduced by SVD
(compression artifacts). As can be seen, the edges leading to the two nodes with
degree 3 are fully retained, while the peripheral ones are downweighted. In fact,
edge 9− 10 is even removed, since it was downweighted to weight 0. In general,
SVD downweights weakly interconnected areas, corresponding to a blurred or
downsampled picture of the original graph, which has previously proven useful
in finding a basic motif in several ground patterns [13].

Definition 2. Latent Structure Pattern Mining (LAST-PM)
Given a graph database R, and a user-defined minimum support m, calculate the
latent structure graph of all patches in the search space, where for each ground
feature f , supp(f) ≥ m.

4 Algorithm

Given the preliminaries and description of the individual steps, we are now in a
position to present a unified approach to latent structure pattern mining, com-
bining alignment, conflict resolution, and component weighting. The method as-
sumes (a) a partial order on ground features (vertical ordering), and (b) canonical
representations for ground features, avoiding multiple enumerations of features
(horizontal ordering). A depth-first pattern mining algorithm, possibly driven by
anti-monotonic constraints, can be used to fulfill these requirements. We follow a
strategy to extract latent structures from patches. A latent structure is a graph
more general than defined in Section 2: the edges are attributed with weights,
and the label function is replaced by a label relation, allowing multiple labels.
Since patches stretch horizontally (sibling relation), as well as vertically (parent
relation), we need a recursive updating scheme to embed the construction of the
latent structure in the ground graph mining algorithm.

We first inspect the horizontal merging: given a specific level of refinement
i, we start with an empty latent structure li and aggregate siblings from low to
high in the lexicographic ordering, starting with empty li. For each sibling s and
innate li, it holds that either

1. s is not significant for any target class, or
2. s is significant for the same target class as li, i.e. X = Y, for sX , liY (if empty,

s initializes li to its class), or
3. s is significant for the other target class.

In cases 1. and 3., li is subjected to latent structure graph calculation and output,
and a new, empty latent li is created. For case 3., it is additionally initialized with
s. For case 2., however, s and li are merged, i.e. subjected to conflict resolution,
aligning s and li, and stacking s onto li.

For the vertical or topdown merging, we return li to the calling refinement
level i− 1, when all siblings have been processed as described above. Structures
li and li−1 are merged, if li is significant for the same target class as li−1, i.e.
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Input : Latent structures l1, l2; an interval C of core node positions.
Output: Aligned and stacked version of l1 and l2, conflicts resolved.
repeat1

E.clear() ; El1
.clear() ; El2

.clear() ;2

for j = 0 to (size(C)-1) do3

index = C[j] ;4

I = (l1.to[index] ∩ l2.to[index]) ;5

E.insert(I \ C) ;6

El1
.insert(l2.to[index] \ I) ;7

El2
.insert(l1.to[index] \ I) ;8

end9

if min(El1
) ≤ min(El2

) then M1 = El1
else M1 = El2

;10

if min(E) < min(M1) then M2 = E else M2 = M1 ;11

core new.insert(min(M2)) ;12

if M1 == El1
then l2.add edge(min(M1)) else l1.add edge(min(M1)) ;13

until E.size==0 ∧ El1
.size==0 ∧ El2

.size==0 ;14

l1 = stack(l1, l2) ;15

l1 = alignment(l1, l2, core new) ;16

return l1;17

Algorithm 1: Alignment Calculation

X = Y, for liX , li−1

Y . Also, condition 1. must not be fulfilled for the current sibling
on level i−1. Otherwise, both li and li−1 are subjected to latent structure graph
calculation and output, and a new li−1 is created.

Alignment calculation (Algorithm 1) works recursively: In lines 3-9, it ex-
tracts mutually exclusive edges leaving core positions to non-core positions, i.e.
there is a distinction between edges leaving the core, but are shared by l1 and l2
(conflicting edges, E), vs. edges that are unique to either l1 or l2 (non-conflicting
edges, El1 , El2). The overall minimum edge is remembered for the next iteration,
ordered by “to”-node position (lines 11-12). The minimum edge of El1 and El2

(line 10; in case of equality, El1 takes precedence) is added to the other structure
where it was missing (line 13).

The procedure can be seen as inserting pseudo-edges into the two candidate
structures that were only present in the other one before, thus creating a canon-
ical alignment. For instance, in Figure 4, exclusive edge 0-7 from a11 would be
first inserted into a21, pushing node 7 to node 8 and edge 3-7 to edge 3-8 in a21.
Subsequently, vice versa, exclusive edge 3-8 would be inserted into a11, leaving
no more exclusive edges, i.e. the two structures are aligned.

This process is repeated until no more edges are found, resulting in the
alignment of l1 and l2. Line 15 then calls the stacking routine, a set-insertion of
l2’s node and edge labels into l1’s and the addition of l2’s edge weights to l1’s, and
line 16 repeats the process for the next block of core ids. Due to the definition
of node and edge lists, the following invariant holds in each iteration: For the
node list, core components are always enumerated in a contiguous block, and
for each edge e, the core components are always enumerated at the beginning
of the partition of the edge list that corresponds to e. For horizontal (vertical)
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merging, we call Algorithm 1 with l1 := li, l2 := s (l1 := li−1, l2 := li). This
ensures that l1 comprises only ground features lower in the canonical ordering
than l2. Thus, Algorithm 1 correctly calculates the alignments (we omit a formal
proof due to space constraints).

4.1 Complexity

We modified the graph miner Gaston by Nijssen and Kok [9] to support latent
structure pattern mining4. It is especially well-suited for our purposes: First,
Gaston uses a highly efficient canonical representation for graphs. Specifically,
no refinement is enumerated twice. Second, Gaston employs a canonical depth
sequence formulation that induces a partial order among trees (we do not con-
sider cycle-closing structures due the complexity of the isomorphism problem for
general graphs). Siblings in the partial order can be compared lexicographically.

LAST-PM allows the use of anti-monotonic constraints for pruning the search
in the forward direction, such as minimum frequency or upper bounds for convex
functions, e.g χ2. The former is integrated in Gaston. For the latter, we imple-
mented statistical metric pruning using χ2 upper bound as described in [8].
Obviously, the additional complexity incurred by LAST-PM depends on con-
flict resolution, alignments, and stacking (see Algorithm 1), as well as weighting
(SVD).

– Algorithm 1 for latent structures l1, l2 takes at most |l1|+ |l2| insert oper-
ations, i.e. is linear in the number of edges (including conflict resolution).

– For each patch, a SVD of the m × n latent structure graph is required
(mn2 − n3/3 multiplications).

Thus, the overhead compared to the underlying Gaston algorithm is rather small
(see Section 5).

5 Experiments

In the following, we present our experimental results on three chemical datasets
with binary class labels from the study by Rückert and Kramer [10]. The nc-
trer dataset deals with the binding activity of small molecules at the estrogen
receptor, the Yoshida dataset classifies molecules according to their bioavailabil-
ity, and the bloodbarr dataset deals with the degree to which a molecule can
cross the blood-brain barrier. For the bloodbarr/ nctrer/ yoshida datasets, the
percentage of active molecules is 66.8/ 59.9/ 60.0. For efficiency reasons, we
only consider the core chemical structure without hydrogen atoms. Hydrogens
attached to fragments can be inferred from matching the fragments back to the
training structures. Program code, datasets and examples are provided on the
supporting website http://last-pm.maunz.de.

4 Version 1.1 (with embedding lists), see http://www.liacs.nl/~snijssen/gaston/.
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5.1 Methodology

Given the output XML file of LAST-PM, SMARTS patterns for instantiation
are created by parsing patterns depth-first (directed). Focusing on a node, all
outgoing edges have weights according to Section 3.4. This forms weight levels of
branches with the same weight. We may choose to make some branches optional,
based on size of weight levels, or demand all branches to be attached:

– nop: demand all (no optional) branches.
– msa: demand number of branches equal to maximum size of all levels
– nls : demand number of branches equal to highest (next) level size

For example, nop would simply disregard weights and require all of the three
bonds leaving the arrow-marked atom of Figure 2 (right), while nls (here also
msa) would require any two of the three branches to be attached. With msa and
nls, we hope to better capture combinations of important branches. The two
methods allow, besides simple disjunctions of atomic node and edge labels such
as in Figure 1, for (nested) optional parts of the structure 5.

All experimental results were obtained from repeated ten-fold stratified cross-
validation (two times with different folds) in the following way: We used edge-
induced subgraphs as ground features. For each training set in a crossvalida-
tion, descriptors were calculated using 6% minimum frequency and 95% χ2-
significance on ground features. This ensures that features are selected ignorant
of test sets. Atoms were not attributed with aromatic information but only la-
beled by their atomic number. Edges were attributed as single, double and triple,
or as aromatic bond, as inferred from the molecular structure. Features were con-
verted to SMARTS according to the variants msa, nls, and nop, and matched
onto training and test instances, yielding instantiation tables. We employed un-
optimized linear SVM models and a constant parameter C = 1 for each pair
of training and test set. The statistics in the tables were derived from pooling
the twenty test set results into a global table first. Due to the skewed target
class distributions in the datasets (see above), it is easy to obtain relatively high
predictive accuracies by predicting the majority class. Thus, the evaluation of a
model’s performance should be based primarily on a measure that is insensitive
to skew. We chose AUROC for that purpose. A 20% SVD compression (percent-
age of sum of singular value squares) is reported for the LAST-PM features, since
this gave the best AUROC values of 10, 15, and 20% in preliminary trials in two
out of three times. Significance is determined by the 95% confidence interval.

5.2 Validation Results

We compare the performance of LAST-PM descriptors in Table 1 with

1. ALL ground features from which LAST-PM descriptors were obtained (base-
line comparison).

5 Figure 1 is an actual pattern found by LAST-PM in the bloodbarr dataset. See sup-
porting website at http://last-pm.maunz.de for the implementation in SMARTS.
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Dataset LAST-PM ALL BBRC MOSS SLS

Variant %Train %Test %Test %Test %Test %Test

bloodbarr nls+nls 84.19 72.20 70.49a 68.50a 67.49a 70.4b

nctrer nls+msa 88.01 80.22 79.13 80.22 77.17a 78.4b

yoshida nop+msa 82.43 69.81 65.19a 65.96a 66.46a 63.8b

a significant difference to LAST-PM.
b result from the literature, no significance testing possible

Table 1. Comparative analysis (repeated 10-fold crossvalidation).

2. BBRC features by Maunz, Helma, and Kramer [8] to relate to structurally
diverse and class-correlated ground features.

3. MOSS features by Borgelt and Berthold [3] to see the performance of another
type of abstract patterns.

4. SLS features by Rückert and Kramer [10] to see the performance of ground
features compressed according to the so-called dispersion score.

For ALL and BBRC, a minimum frequency of 6% and a significance level of
95% were used. For the MOSS approach, we obtained features with MoSS [3].
This involves cyclic fragments and special labels for aromatic nodes. In order
to generalize from ground patterns, ring bonds were distinguished from other
bonds. Otherwise (including minimum frequency) default settings were used,
yielding only the most specific patterns with the same support (closed features).
For SLS, we report the overall best figures for the dispersion score and the SVM
model from Table 1 in their paper. As can be seen from Table 1, using the given
variants for the first and second fold, respectively, LAST-PM outperforms ALL,
BBRC and MOSS significantly for the bloodbarr and yoshida dataset (paired
corrected t-test, n = 20), as well as MOSS for the nctrer dataset (seven out of
nine times in total).

Table 2 relates feature count and runtime of LAST-PM and ALL (median
of 20 folds). FCR is the feature count ratio, RTR the runtime ratio between
LAST-PM and ALL, as measured for descriptor calculation on our 2.4 GHz Intel
Xeon test system with 16GB of RAM, running Linux 2.6. Since 1/FCR always
exceeds RTR, we conclude that the additional computational effort is justified.
Note that nctrer seems to be an especially dense dataset. Profiling showed, that
most CPU time is spent on alignment calculation, while SVD can be neglected.

In their original paper [12], Yoshida and Topliss report on the prediction
on an external test set of 40 compounds with physico-chemical descriptors, in

Dataset LAST-PM ALL FCR/RTR

bloodbarr 249 (1.23s) 1613 (0.36s) 0.15 /3.41
nctrer 193 (12.49s) 22942 (0.13s) 0.0084 /96.0769
yoshida 124 (0.28s) 462 (0.09s) 0.27 /3.11

Table 2. Analysis of feature count and runtime.
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which they achieved a false negative count of 2 and false positive count of 7.
We obtained the test set and could reproduce their exact accuracy with 1 false
negative and 8 false positives, using LAST-PM features.

Hu and co-workers [7], authors of the bloodbarr dataset study, provided us
with the composition of their “external” validation set, which is in fact a subset of
the complete dataset, comprising 64 positive and 32 negative compounds. Their
SVM model was based on carefully selected physico-chemical descriptors, and
yielded only seven false positives and seven false negatives, an overall accuracy
of 85.4%. Using LAST-PM features and our unoptimized polynomial kernel, we
predicted only five false positives and two false negatives, an overall accuracy of
91.7%.

We conducted further experiments with another 110 molecule blood-brain
barrier dataset (46 active and 64 inactive compounds) by Hou and Xu [4], that
we obtained together with pre-computed physico-chemical descriptors. Here, we
achieved a AUROC value of 0.78 using LAST-PM features in repeated 10-fold
crossvalidation, close to the 0.80 that the authors obtained with the former.
However, when combined, both descriptor types give an AUROC of 0.82. In
contrast to this, AUROC could not be improved in combination with BBRC
instead of LAST-PM descriptors.

6 Related Work

Latent structure pattern mining allows deriving basic motifs within the corre-
sponding ground features that are frequent and significantly correlated with the
target classes. The approach falls into the general framework of graph mining.
Roughly speaking, the goal of pattern mining approaches to graph mining is
to enumerate all interesting subgraphs occurring in a graph database (interest-
ingness defined, e.g., in terms of frequency, class correlation, non-redundancy,
structural diversity, . . . ). Since this ensemble is in general exponentially large,
different techniques for selecting representative subgraphs for classification pur-
poses have been proposed, e.g. by Yan [11]. Due to the NP-completeness of
the subgraph isomorphism problem, no efficient algorithm is known for general
graph mining (i.e. including cyclic structures). For a detailed introduction to
the tractable case of non-cyclic graph mining, see the overview by Muntz et al.
[1], which mostly targets methods with minimum frequency as interestingness
criterion. Regarding advanced methods that go beyond the mining of ground fea-
tures, we relate our method to approaches that provide or require basic motifs
in the data, and/or are capable of dealing with conflicts.

Kazius et al. [6] created two types of (fixed) high-level molecule representa-
tions (aromatic and planar) based on expert knowledge. These representations
are the basis of graph mining experiments.

Inokuchi [5] proposed a method for mining generalized subgraphs based on a
user-defined taxonomy of node labels. Thus, the search extends not only due to
structural specialization, but also along the node label hierarchy. The method
finds the most specific (closed) patterns at any level of taxonomy and support.
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Since the exact node and edge label representation is not explicitly given before-
hand, the derivation of abstract patterns is semi-automatic.

Hofer, Borgelt and Berthold [3] present a pattern mining approach for ground
features with class-specific minimum and maximum frequency constraints, that
can be initialized with arbitrary motifs. All solution features are required to
contain the seed. Moreover, their algorithm MoSS offers the facility to collapse
ring structures into special nodes, to mark ring components with special node
and edge labels, or to use wildcard atom types: Under certain conditions (such as
if the atom is part of a ring), multiple atom types are allowed for a fixed position.
It also mines cyclic structures at the cost of losing double-free enumeration.

All approaches have in common that the (chemical expert) user specifies
high-level motifs of interest beforehand via a specific molecule representation.
They integrate in different ways user-defined wildcard search into the search
tree expansion process, whereas the approach presented here derives abstract
patterns automatically by resolving conflicts during backtracking and weighting.

7 Conclusions

In the paper, we introduced a method for generating abstract non-ground fea-
tures for large databases of molecular graphs. The approach differs from tradi-
tional graph mining approaches in several ways: Incorporating several similar
features into a larger pattern reveals additional (latent) information, e.g., on
the most frequently or infrequently incorporated parts, emphasizing a common
interesting motif. It can thus be seen as graph mining on subgraphs. In tradi-
tional frequent or correlated pattern mining, sets of ground features are returned,
including groups of very similar ones with only minor variations of the same in-
teresting basic motif. It is, however, hard and error-prone (or sometimes even
impossible) to appropriately select a representative from each group, such that
it conveys the basic motif. Latent structure pattern mining can also be regarded
as a form of abstraction, which has been shown to be useful for noise handling
in many areas. It is, however, new to graph and substructure mining.

The key experimental results were obtained on blood-brain barrier (BBB),
estrogen receptor binding and bioavailability data, which have been hard for
substructure-based approaches so far. In the experiments, we showed that the
non-ground feature sets improve over the set of all ground features from which
they were derived, but also over MOSS [3], BBRC [8] and compressed [10] ground
feature sets when used with SVM models. In seven out of nine cases, the improve-
ments are statistically significant. We also found a favorable tradeoff between
feature count of and runtime for computing LAST-PM descriptors compared to
the complete set of frequent and correlated ground features.

We took bioavailability and blood-brain barrier data and QSAR models from
the literature and showed that, on three test sets obtained from the original
authors, the purely substructure-based approach is on par with or even better
than their approach based on physico-chemical properties only. We also showed
that LAST-PM features can enhance the performance of solely physico-chemical
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properties. Therefore, latent structure patterns show some promise to make hard
(Q)SAR problems amenable to graph mining approaches.
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