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Abstract

The reliable computer-based prediction of toxicological activities

of chemicals is a valuable achievement. One can spare costly and

ethically problematic animal testing, and it is much faster than in-

vitro methods. The problem can be approached with expert systems,

full featured (Q)SAR models or other strategies.

This work presents a robust instance-based approach using linear

fragments of chemical compounds as descriptors. Predictions are

derived using distance-weighted k-nearest-neighbour techniques and

are assigned confidence values. The algorithm employs data mining

techniques such as significance tests.

Three models have been developed and evaluated using leave-

one-out crossvalidation for two popular, publicly available databases,

namely a simple median prediction, and a multilinear model with and

without prior principal components analysis.

The multilinear approach yielded R2 values of 70% for more than

half of the data set and up to 83% for predictions with a higher

confidence level. These results put Lazar on a competitive level.
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1 Introduction

This section introduces the prediction of chemical properties as an applica-

tion of machine learning methods, specifically instance-based learning meth-

ods.

1.1 Predictive Toxicology

1.1.1 Overview

The task of Predictive Toxicology is to predict toxic effects from chemical

and biological information, usually with the help of a computer program.

It is therefore influenced by biology, chemistry and computer science (figure

1).

Figure 1: Predictive Toxicology and neighbouring disciplines

Recently, Artificial Intelligence methods have been used in predictive

toxicology. The data driven approach presented in this work employs Ma-

chine Learning techniques. Machine learning, a broad subfield of artificial

intelligence, is concerned with computer programs that improve their be-

haviour through learning over time and/or from training data. Machine

learning uses techniques such as statistical significance tests, clustering and

classification.

In a more general sense, machine learning is a Data Mining technique
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to achieve the goal of knowledge discovery in massive amounts of data -

amounts that cannot be handled by humans which is also often due to its

high dimensionality.

More formally, machine learning methods are used to learn a model from

training data that is able to predict the activity or impact of a chemical

structure towards a specific toxicological endpoint.

Experimental data from in-vitro and in-vivo bioassays can be used as

training data in predictive toxicology. Toxic effects are represented as qual-

itative (e.g. carcinogenicity classifications), or as quantitative (e.g. LC50)

values, or clinical records of patients that allow for classification. Com-

pounds are described by structural information or physicochemical proper-

ties (e.g. the octanol-water partition coefficient or quantum-chemical pa-

rameters). The idea of predictive toxicology is to find regularities between

those properties and toxic activities and use them for the prediction of

untested compounds.

In learning, the model is modified according to some optimisation crite-

rion, for example maximum likelihood statistics, which fit best a given set

of training data, thereby minimising the error of the model.

“The primary aim of predictive toxicology is, of course, the

prediction of toxic activities of untested compounds. This en-

ables chemical and pharmaceutical companies, for example, to

evaluate potential side effects of candidate structures even with-

out synthesizing them. The same feature is also attractive for

governmental authorities that have to deal with compounds with

incomplete toxicity information. [...]

Many predictive toxicology systems are capable to provide a ra-

tionale for their predictions. If the prediction is based on chem-

ical substructures and/or chemical properties, it is straightfor-

ward to use this information for the design of less dangerous,

but equally efficient compounds.” [Hel04]

1.1.2 Molecular Descriptors

The toxicological phenomenon to be analyzed determines to a great extent

what information should be incorporated into the training data. Often, in
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biological settings, receptor-ligand processes play a key role. If the ligand

is present, the receptor initiates a cellular response. Chemically speaking,

this mechanism is mediated by interactions between the molecules that the

participants consist of. Therefore, the chemical structure is naturally infor-

mative when it comes to analyse such processes.

There is a wide variety of structural descriptors that could be used, for

example 1D, 2D and 3D molecular descriptors as well as fragment-based

ones. There is no “universal set” of descriptors which can be generally

applied. The search for appropriate descriptors is guided by the need for

features that are expressive enough, but at the same time as simple as

possible. In other words, they should be relevant and interpretable for

the toxicological mechanism to be described, but not too computationally

expensive.

Expressive also means that making small changes to the descriptors of a

molecule only causes a small change in the activity of the molecule. This re-

lation is crucial for the use of descriptors, because it allows the interpolation

of activities of similar compounds to derive a prediction. Algorithms that

learn a model from training data (including Lazar) rely on that principle.

1.2 Instance-Based Learning

The following introduces k-nearest-neighbour techniques, which is an Instance-

Based Learning technique (also called Lazy Learning in contrast to Eager

Learning methods [Mit97]).

Often, when learning a Target Function by interpolating from training

data in order to predict unknown instances, a global model is learned that

best fits the entire dataset. This approach is called eager learning, because

every piece of information is incorporated into the model before making

any prediction. With eager learning the model is a fixed function, and for

every unknown instance the prediction is computed by simply evaluating the

function on this instance. This is different from Lazy Learning methods,

where training data is simply stored. No global model is learned beforehand,

rather, for every query a new individual prediction is derived. We now

investigate two common lazy learning methods that Lazar uses.

Assume all instances in a training database correspond to points in the
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n-dimensional feature space Rn. Every instance x can then be described by

the feature vector 〈a1(x), . . . , an(x)〉 and we know the function values f(x)

for all x of the otherwise unknown target function f .

The notion of distance between points is crucial for the instance-based

learning methods presented here. For example, the naturally induced eu-

clidian distance between two points xi and xj is defined as d(xi, xj) =√∑n
r=1(ar(xi)− ar(xj))2, but other distance measures are possible, too.

1.2.1 k-Nearest-Neighbour Prediction

The k nearest neighbours (or neighbours for short) to the query instance

xq are the k database instances with the smallest distance to xq. The k-

nearest-neighbour prediction (or knn prediction for short) is defined as

f̂(x) =

∑k
i=1 f(xi)

k
, (1)

i.e., the mean of the function values of the neighbours. One could also use

the median which is similar to the mean but more robust against extreme

values (see section 2). In case that the neighbours are distributed very

unequally around the query structure a distance-weighting is favorable. This

can be achieved by a slight generalization of equation (1):

f̂(x) =

∑k
i=1 wi ∗ f(xi)∑k

i=1 wi

, (2)

where wi is a function of d(xi, xq)). For example, in the euclidian distance

case one could use wi = 1
d(xq ,xi)2

. This ensures that nearer neighbours get

greater weight. Equation (2) is therefore the distance-weighted mean of the

neighbours.

1.2.2 knn Regression

The knn predictions avoid the explicit approximation of the target function

f in that they do not directly incorporate the features of the neighbours

and the query structure in f̂ . Local Linear Regression is another member

of the family of knn predictions that does just that. It is defined as:

f̂(x) = b1a1(x) + . . . + bnan(x), (3)
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i.e., a local linear model is learned, namely the coefficients b1 . . . bn, which

form an explicit approximation to f over a local region surrounding xq,

namely the neighbours. To obtain the bi, a system of linear equations has

to be solved to minimize the error of f̂ on the data, one line for every

neighbour:

f(x1) = b1a1(x1) + . . . + bnan(x1)

...

f(xk) = b1a1(xk) + . . . + bnan(xk)

In order to retain the weighting between neighbours, weights w1 . . . wk for

the lines can be included in the calculation of the coefficients, which should

again be a function of the distance to the query structure. This is called

Locally Weighted Regression.

1.2.3 Properties of knn predictions

Knn predictions are lazy learning methods: for each distinct query a new

approximation to the target function is created. This has important impli-

cations:

• The approximations are local and differ from one another; therefore,

for the whole feature space, many different approximations are used

at different locations. The single approximations are quite simple, but

seen as a whole they can approximate a complex function. They are

independent from one another and there is no need to model a very

complex n-dimensional function explicitly. Local methods like knn

or radial basis functions are also quite robust, because they are only

dependent on the data points close to the query instance.

• A new model is built for every new query, i.e., generalization is de-

ferred until a new query instance is to be predicted. In contrast to

eager learning, the computational burden for lazy learning methods is

quite high, since all the training is done at query time. Eager learn-

ing methods have a seperate training phase, in which a global model

is learned from the whole database and then at query time the only

work to be done is for the fixed model function to be evaluated on the

query instance. So for lazy learning methods, it should be possible to
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calculate the neighbours fast.

• Often, with lazy learning, all of the features are included in the model,

which could be problematic, since in almost every case not all of the

features are relevant. Especially when using structural information,

there are substructures that are special cases of other substructures.

Those are often highly correlated, because they probably trigger the

same chemical reactivity, or they are not active at all. It is wise to

incorporate only uncorrelated and relevant features into the model.

Measures one can take towards excluding correlated features include

finding out about the significance of features and then stretching the

axis of the feature space accordingly, or using more elaborate methods

like Decision Trees or Principle Components Analysis, which include

only a subset of the features in the model or find the direction of

greatest variance in the data.

• The weighting of neighbours at model-building time according to their

distance from the query structure allows for using all training instances

as neighbours instead of only the k nearest ones, i.e., if there are n

training instances, set k := n. Doing so is no harm to model pre-

cision, because distant training points will have little effect on the

approximation. The only obvious drawback is that model building

takes longer.

We now turn to see, how knn techniques can be beneficial for Predictive

Toxicology.

1.3 Predicting Quantitative Chemical Properties

As discussed in section 1.1, in Predictive Toxicology we have existing train-

ing data, containing structural, physicochemical or other information as

well as measured toxicological activities of the compounds. We have one

untested compound called the query structure, for which we intend to pre-

dict the toxicological activity.
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1.3.1 (Q)SAR

(Quantitative) Structure-Activity Relationships is a model of a well defined

biological process caused by a chemical compound, such as biological activ-

ity or chemical reactivity (herein collectively referred to as activity)a, using

chemical descriptors of the compound. (Q)SAR’s most general mathemati-

cal form is:

Activity = f(physicochemical and/or structural properties) (4)

The target function f is to be learned from training data contained in

databases , which store chemical compounds or structures along with some

properties in quantitative or qualitative form. The learning can be done by

different means, such as (multi)linear regression or neural networks. Com-

mon to all learning mechanisms is the effort to minimize the prediction error,

i.e. the modelling funtion f is improved until some optimization criterion

is reached.

According to [KH04], the task of extracting a (Q)SAR model from train-

ing data consists of the following steps:

1. Definition of the goal of the project and the purpose of the SAR

models.

2. Creation or selection of the dataset.

3. Checking the dataset for mistakes and inconsistencies, and perform

corrections.

4. Selection of the features relevant to the project and transformation of

the data into a format which is readable by data mining programs.

5. Selection of the data mining technique.

6. Exploratory application and optimisation of the data mining tools to

see if they provide useful results.

7. Application of the selected and optimized data mining technique to

the data set.

aThe “Q” in “(Q)SAR” refers to quantitative properties of a compound, not to the
activity. Using qualitative properties only is known as “SAR”
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8. Interpretation of the derived model and evaluation of its performance.

9. Application of the derived model, e.g., to predict the activity of untested

compounds.

1.3.2 Training data requirements for (Q)SAR models

When dealing with (Q)SAR models, one must always be critical about con-

clusions drawn from the training data. There are often subtle problems

embedded some of which will be elaborated in the following.

The training compounds should feature a large variety of activity values

for the endpoint under investigation. If this is the case, then they are said to

have a good Predictive Capacity . If the histogram of activity values shows

a sparse distribution in the middle and a concentration at the ends of the

range, then binning the data into “active” vs. “non-active” could be more

appropriate. If the range spans several orders of magnitude, then log values

should be used instead of the original values [CL04].

A common QSAR problem is the phenomenon of Overfitting , that is,

the model is improved until it perfectly fits the training data, hampering

the ability to predict unseen data. So there is a tradeoff between general

predictivity and error minimization on the training data [TLL95]. This is

especially likely to happen for nonlinear methods.

Bad external predictivity is often not only due to overfitting, but also

due to the incorporation of structurally diverse and non-congeneric com-

pounds, that act with different biological mechanisms, into the training

data. On the other hand, if training data contains only compounds with

similar structures and specific biochemical interaction then very meaning-

ful models can be learned by QSAR methods. Unfortunately, existing

databases used in the life sciences are from the first type rather than from

the second type. Often, when predicting toxicological endpoints, the learn-

ing data is therefore preselected for a single Mode of Action (MOA), i.e. the

specific biochemical interaction through which a drug substance produces

its pharmacological effect. If this is the case, non-structural descriptors such

as the octanol-water partition coefficient (logP) can be used to learn very

accurate models.

Sometimes, however, the training information in the databases is sim-
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ply wrong, i.e., for some compounds the activity information differs from

the real values. This happens often for very toxic compounds, where only

small doses are needed to obtain a reaction, or from transcription errors.

Compounds with wrong database information are called outliers . There is

no way of excluding them from the training database beforehand. Therefore

the accuracy of the model may be compromised.

The Lazar algorithm is designed to tackle the problems of non-congeneric

training data and outliers, in that it uses structural information and avoids

learning a global model for the whole training set. Rather, it uses k-nearest-

neighbour techniques to predict a chemical structure on the basis of a struc-

turally similar (congeneric) subset of the training set, namely the neighbours

(see section 1.2). Since Lazar is an instance-based method, outliers will only

have a local effect. In Lazar, the applicability domain of a training set is

modelled explicitly, clearly indicating for every new prediction if it will be

reliable. Inutitively, it is reliable if the neighbours are “similar enough” to

base a prediction on them. The following section details those mechnisms.
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2 Methods

This section first gives a high-level view of the Lazar algorithm. It then

describes the discovery of relevant fragments. After that, the identification

of neighbours to the query structure as well as model building and prediction

using knn techniques is elaborated.

2.1 Lazar Classification System

The following introduces the big picture of the Lazar prediction system and

describes the steps towards the integration of quantitative information.

2.1.1 Linear fragments

The idea is to apply machine learning and data mining techniques to non-

congeneric data sets, i.e. compounds that do not share a common core

structure. Chemical similarity in Lazar is therefore based on structural

information with respect to some given endpoint, not on physicochemical

properties. The structural information consists of linear fragments occuring

in the chemical compounds. A linear fragment of a compound is a linear

subgraph (or path) of the 2D graph representing the compound. Lazar uses

a simplified version of MolFea, the Molecular Feature Miner [KDH01], to

find all linear fragments of a compound, employing the SMILES represen-

tation language [JWD00].

Lazar infers toxicological activity of the query structure from its chem-

ical structure, assuming that the biological activity of a compound is deter-

mined by its chemical structure (or some of its properties). More specifically,

linear fragments are used for similarity measurements and prediction. Fig-

ure 2 shows an example structure. It consists of two carbon ring structures

connected through an oxygen atom. An example linear fragment is marked.
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Using linear fragments ensures a modest computational load. Preliminary

Figure 2: 2D representation of a compound ([KDH01], p. 2). It consists of
two benzene rings connected through an oxygen atom. An example linear
fragment is marked.

results show that using other types of features (e.g. subgraphs) yields no

significant advantages.

A linear fragment f is a subfragment of a linear fragment f ′ if the

2D graph representing f is a subgraph of the graph representing f ′. This

induces an ordering f ¹sub f ′. This ordering corresponds directly to spe-

cialization of fragments: f ′ is a specialization of f . A linear fragment f

where there exists no other linear fragment f ′, such that f ¹sub f ′, is called

most specialized .

Example: We have a look at two linear fragments, given in the SMARTS

language for describing molecular patterns [JWD00], along with the num-

bers of compounds, in which they occur in the EPAFHM database (this is

an excerpt from the Lazar linfrag input file, see Appendix B):

f ’s structure, c:n-C, represents an aromatic c joined by an aromatic
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f: c:n-C [ 18 83 311 423 437 515 537 572 ]
g: c:n-C-C [ 311 515 ]

bond to an aromatic n which is joined to an aliphatic C by an aliphatic

(single) bond. Joining another aliphatic C by another aliphatic bond gives

g. It holds that f ¹sub g. Therefore, g is a specialization of f . This can

also be verified from looking at the compounds: f occurs in every compound

that g occurs in, but not vice versa.

Most specialized linear fragments can be thought of as representing a

whole cluster of linear fragments, namely their subfragments. The fragments

contained in such a cluster are often highly correlated: they occur together,

and it is possible that they are responsible for a single chemical mechanism

if they are relevant for the current endpoint. A model based on linear

fragments should try to take this into account.

2.1.2 Lazar workflow

A Lazar database consists of a set of pairs of chemical compounds and

activity information for a specific endpoint. Given a database and a query

structure Lazar gives a prediction about the activity of the query structure.

The original algorithm for qualitative activity values [Hel06] works in four

main steps, as depicted in figure 3.

In step 1., all linear fragments occuring in the training set are extracted.

This is necessary, because ...

“... especially with toxicological effects, we frequently face

the problem, that biochemical mechanisms are diverse, purely

understood or even unknown. It is therefore hard to guess (and

select) the chemical features that are relevant for a particular

effect [...].” [Hel04].
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1. Extract all linear fragments from all structures in the training set (this
can be done beforehand as this information never changes for a given
database).

2. Find the linear fragments that occur significantly more frequently in
active than in non-active training structures.

3. Find structures in the training set that are similar to the query struc-
ture with respect to the linear fragments found in the previous step
(neighbours).

4. Predict the activity of the query structure based on the activity of the
neighbours.

Figure 3: Main Lazar Workflow (quantitative)

In step 2., Data Mining is applied to select significant fragments. This au-

tomatic selection ensures that no important fragment can be missed. Step

3 consists of a weighted majority vote from the neighbours. Step 4 was

originially conceptually and computationally simple and has since been ex-

tended to a more sophisticated procedure.

2.1.3 Integrating Quantitative Information

The original version works on a database of compounds with known qual-

itative activity values (qualitative database), i.e., for every compound in

the database it is known whether it is active or inactive with respect to

some clearly defined toxicological endpoint. This information is qualitative

because it is a yes/no decision. The purpose of this work is to extend the al-

gorithm to reliably predict quantitative values, i.e. how active a compound

will be on a numerical scale.

The integration of quantitative training activities consists of changing

the activity information about compounds in the database from qualitative

to quantitative values (quantitative database). In step 2. of figure 3, a

chi-square test is used to “identify fragments, that occur significantly more
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frequent in toxic than in non-toxic compounds” [Hel06]. This test employs

maximum-likelihood statistics obtained from counting the active and non-

active compounds. With quantitative values the use of counting statistics

is no longer possible, i.e. there is no maximum-likelihood value to use as

expectation values for a potential chi-square test. Instead we are left with

a range of unbinned activity values. To find out which fragments are part

of specifically active compounds appropriate statistics are needed. This is

covered in section 2.2.

The prediction process (step 4 in figure 3) must be adapted to the

prediction of quantitative activity values. For qualitative values a weighted

Tanimoto Index was used for prediction [Hel06]. For quantitative values

no binary decision can be taken, and the activity values of the neighbours

usually span several orders of magnitude. The prediction step is covered in

section 2.4.

The four main steps of the algorithm are depicted again in the data flow

diagram in figure 4, abstracted from the type of activity values. It applies

therefore to both Lazar versions.

We have seen a general overview how Lazar uses linear fragments and

instance-based learning to derive a local prediction. In the next section we

get down to the details, explaining data mining techniques and different

prediction models.

2.2 Significant Features

Kolmogorov-Smirnov-Test In [PTV93], a method for implement-

ing the Kolmogorov-Smirnov test (KS test) is presented. Its purpose is, to

find out whether a given set of data is drawn from a known probability

distribution, for example from a normal distribution. It works for unbinned

data with which we are dealing in our case of quantitative data. The widely
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Figure 4: Data Flow Diagram of Lazar
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used chi-square test works only for binned data and is not suitable for our

purposes.

Figure 5: Kolmogorov-Smirnov test ([PTV93], p. 5): step size function
SN(x), user defined probability distribution P (x) and distance D.

The KS test compares a cumulative probability distribution SN(x) ob-

tained from quantitative data to a user-defined cumulative probability dis-

tribution P (x) (Figure 5). It measures the maximum distance D between

SN(x) and P (x). If D is “large” the test rejects the null hypothesis that

both distributions are the same. The step size function is induced from an

ascending ordered set N = {x1, . . . , xn} of quantitative values as follows:

SN(x) is the fraction of data points to the left of a given value x. Obviously,

between consecutive xi’s, this function is constant and jumps by the same

constant 1/|N | at each xi.

We want to know whether the activity values for compounds contain-

ing a specific fragment f differ significantly from those of all compounds.

Thus we want to compare two sets of unbinned data, and we use two step

size functions SN1(x) and SN2(x) instead of SN(x) and P (x). N1 contains

the activity values of all training compounds containing f , and N2, of all

training compounds whether they contain f or not.
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Definition 1 (Distance): The distance D between two step size functions

is defined as

D = max
−∞<x<∞

|SN1(x)− SN2(x)| (5)

D serves as input to the function probks together with the set sizes of

N1 and N2:

pf = probks(D, size(N1), size(N2)) (6)

pf indicates the probability that the two definition sets are not drawn from

the same probability distribution functionb. Therefore, it serves as an indi-

cator for f significantly affecting the activity values for the endpoint under

investigation. If pf > 0.95 then f is called a significant feature.

Lazar employs an extended KS test which is equally sensitive for the

whole range of activity valuesc.

2.3 Neighbours

Neighbours to the query structure are determined by the p-weighted frac-

tion of significant features shared with the query structure. Therefore, the

neighbours are structurally similar compounds with regard to the current

endpoint.

Definition 2 (Similarity): Let F be the set of significant features. For all

compounds st, determine sim(sq, st), the similarity between query structure

sq and st
d:

sim(sq, st) =

∑
f∈F

{p4
f |f ⊆ sq ∧ f ⊆ st}

∑
f∈F

{p4
f |f ⊆ sq ∨ f ⊆ st} (7)

All compounds st with sim(sq, st) > 0.3 are considered neighbours of the

query structure sq. This threshold is introduced for efficiency reasons only.

bprobks is defined in [PTV93]
csee also [PTV93]
dThe exponent of 4 ensures that low values of p do not get too much weight.
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One could use all training compounds as neighbours because of weighting

in the prediction process (see section 1.2.3).

2.4 Predictions

This section introduces the application of k-nearest-neighbour strategies

(see 1.2) in Lazar.

2.4.1 Median Model

The predicted activity is the sim-weighted median of the neighbours’ ac-

tivity values. The weighted median is similar to the weighted mean, the

standard knn prediction, but more robust against extreme values.

Definition 3 (Weighted Median): Consider a set of n real numbers

sorted in ascending order in a sequence nr = 〈nr1, . . . , nrn〉. Every element

nri of the sequence has an associated real value w(nri) called its weight.

Then the Weighted Median Index is defined as

idx =

n∑
i=1

i ∗ w(nri)

n∑
i=1

w(nri)
. (8)

The Weighted Median is obtained by interpolation between the values of

the upper and lower element relative to the position given by the median

index e.

med =
(nrbidxc + nrdidxe)

2
(9)

Finer interpolations than taking the mean values of the two closest elements

could of course be applied.

Example: Consider the ordered sequence s = 〈1, 3, 1, 2, 1, 1, 100〉 of

eb c (d e) denotes rounding down (up) to whole numbers.
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length 7. The mean value is (1+3+1+2+1+1+100)/7 ≈ 15.57 whereas

the median is s4 = 2, because 4 is the index for the middle positionf.

The mean is greatly affected by the sequence member 100. This is not

very sensible, as no number in the sequence is close to 15.57. The median, on

the other hand, will always be reasonably close to other sequence members.

Definition 4 (Lazar Weighted Median): Consider the set of activities

of the k nearest neighbours sorted in ascending order in a sequence nb =

〈f(nb1), . . . , f(nbk)〉. Every f(nbi) has an associated value sim(sq, nbi), con-

sisting of the neighbour’s similarity value to the query structure.

The Lazar Weighted Median is an application of the weighted median

obtained by using the similarity values as weights:

idx =

k∑
i=1

i ∗ sim(sq, nbi)

k∑
i=1

sim(sq, nbi)

f̂(sq) =
(f(nbbidxc) + f(nbdidxe))

2

(10)

2.4.2 Multilinear Model

In the multilinear model the activity is predicted by a weighted general

linear model, based on the neighbours, implementing knn regression.

Definition 5 (General Linear Model): A General Linear Model is a

vector c of coefficients that minimize the error on a system of linear equa-

tions,

y = Xc, (11)

where y is a vector of n observations, and X is a k by m matrix of predictor

variables.

fwe use the unweighted median here, i.e., all weights are the same number unequal
to zero
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Definition 6 (Lazar Multilinear Model): Let nbi be the i-th-nearest

neighbour to the query structure sq , let act(nbi) be the activity of nbi, and

let F be the set of features obtained from uniting the linear fragments of

all neighbours with the linear fragments of the query structure:

F = (
k⋃

i=1

features(nbi)) ∪ features(sq) (12)

Let fj be the j-th most significant feature in F , and let w be a vector of

weights for the observations. Then the Lazar multilinear model is a vector

c = (c1, . . . , cm) that minimizes the error on a general linear model y = Xc

with weight vector w = (w1, . . . , wk) based on the k nearest neighbours to

the query structure sq and the m most significant features of the whole

training database, whereg

1. yi = act(nbi), where nbi is the i-nearest neighbour to sq,

2. Xij =





p(fj) , if fj occurs in nbi,

0 , else,

3. wi = sim(sq, nbi)
4.

The feature vector x = (x1, . . . , xm) of sq is defined as:

xj =





p(fj) , if fj occurs in sq,

0 , else.

The prediction is obtained by evaluating x on the model c:

f̂(sq) = cT x (13)

Each row in the k × m matrix X corresponds to a neighbour. The

gThe exponent of 4 in the definition of the weights ensures that distant (unsimilar)
neighbours don’t get too much weight.
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columns are indicators for linear fragments featuring the significance value

for presence and zero for absence.

2.4.3 Cluster Model

In the following, a method for feature clustering that goes beyond the simple

ordering of linear fragments according to their significance is elaborated.

Principal Components Analysis (PCA) is a powerful tool to iden-

tify patterns within data and express the data differently with the purpose

of highlighting their similarities and differences. I will give an example-

applied explanation of how PCA works, leaving out mathematical proofs.

As it is a frequently applied technique it is well documented [Jol02].

Especially in high-dimensional data it can be difficult to find patterns

which is also due to the fact that it is hard to visualize. If parts of the

data are correlated, PCA decorrelates them and unites them to a set of

new descriptors, the so-called principal components. PCA features also the

possibility of compressing data, namely by omitting the most insignificant

principal components.

In the multilinear model of Lazar there is m-dimensional data in the ma-

trix X (see the previous section), one dimension for every descriptor (linear

fragment). Every data point (compound) is therefore an tuple in the m-

dimensional feature space. It is quite probable that many linear fragments

have the same pattern of occurence and are responsable for triggering the

same chemical mechanism (see section 2.1.1). If this is true, then many

columns in X are highly correlated.

PCA proceeds in two steps: first the principal components of the data

have to be calculated. They will form the unit vectors of the new descrip-

tor space. In the second step they are aggregated in a so-called rotation
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matrix which is then used to transform the data’s coordinates into the new

descriptor space.

There are different possibilities for computing the principal components.

The common idea is to capture the direction of the largest variance in the

data with the first principal component, the second largest variance with

the second principal component and so on. The most insightful approach is

to compute the principal components as the eigenvectors of the covariance

matrix of the zero-centered data matrix D.

For n two-dimensional, real-valued and zero-centered (i.e. mean value

subtracted) data points in the dimensions X and Y , one can compute the

covariance between X and Y , cov(X, Y ) as:

cov(X,Y ) =

∑n
i=1 Xi ∗ Yi

n− 1
, (14)

For more than two dimensions one can form a covariance matrix yielding the

covariance between each pair of dimensions. The eigenvectors of this covari-

ance matrix form the principal components. Ordering them in descending

order by their associated eigenvalues yields a scaling of their importance:

more important components have greater associated eigenvalues. Depend-

ing on the regularity in the data, i.e. the amount of correlation between the

original dimensions, one can observe that summing up the eigenvalues in

this ordering the sum of the eigenvalues is approached more or less quickly.

With high correlation few principal components will be required to capture

most of the variance.

Having determined all principle components one fills them in a so-called

rotation matrix R columnwise from left to right in descending order of their

importance. Performing matrix multiplication between rotation matrix and

data matrix transforms the data into the new descriptor space: the trans-

formed data Dtrans can be computed as: DT
trans = RT ∗DT .
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Example: The application of PCA can be understood most easily in

two dimensions. The example in figure 6 is due to Smith [Smi02].

DATA: ROTATION MATRIX: TRANSFORMED DATA:
2.5 2.4 -0.677873 0.735179 -0.82797 0.175115
0.5 0.7 -0.735179 -0.677873 1.77758 -0.142857
2.2 2.9 -0.992197 -0.384375
1.9 2.2 -0.27421 -0.130417
3.1 3 -1.6758 0.209498
2.3 2.7 -0.912949 -0.175282
2 1.6 0.0991095 0.349825
1 1.1 1.14457 -0.0464173
1.5 1.6 0.438046 -0.0177646
1.1 0.9 1.22382 0.162675

Figure 6: Top: Original data (left), rotation matrix calculated by PCA
consisting of the eigenvectors of the covariance matrix of the zero-centered
data (middle) and the transformed data obtained by multiplying the data
with the rotation matrix (right). Bottom: Data plot of zero-centered data
overlayed by the principle component vectors (left) and transformed data
plot (right).

All key concepts of PCA can be observed from this example:

• The data has a strong pattern, i.e. the two dimensions are strongly

correlated: the data points form a “cloud” around the line y = x as

can easily be seen from the left plot.
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• The eigenvectors of the covariance matrix are plotted over the data

as dashed lines. They form the columns of the rotation matrix. The

first eigenvector,
(−0.677873
−0.735179

)
, points roughly into the direction y = x

and has the largest associated eigenvalue. It captures the main trend

in the data like a linear best fit. The second eigenvector,
(

0.735179
−0.677873

)
,

captures the secondary, less important, trend, namely that all points

are off to the side to some amount. The corresponding eigenvalues

are 1.28403 and 0.0490834, respectively. This means that the first

eigenvector captures over 96% of the data’s variance (the sum of the

eigenvalues).

• The two eigenvectors are the principal components that give the di-

rections of the new coordinate system. The right plot depicts the data

after transformation in the new coordinate system. This gives us the

very same data, only in the terms of it’s principal components: it is

now expressed in terms of pattern between the data. Another way of

saying it is: we have rotated our coordinate system 45 degrees to the

left because the main information lies in a 45 degree angle to the left.

Of course this will get more complex in higher dimensions, but the

principle is the same.

• It is possible to reduce the amount of data by losing some of the

information: one can omit some of the less important principal com-

ponents. In our example one could omit the second component which

would simply eliminate all information in the transformed data con-

cerning the second dimension. This would have the effect of project-

ing all points on the x-axis, losing the y-information. Eliminating the

eigenvectors with the lowest eigenvalues is optimal in the sense that

the data cannot be shrinked without losing less information.

Lazar uses PCA in the cluster model to compress its structural data. Start-

ing with the data matrix X from the multilinear model, X is enlarged by
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one more row: the query structure’s data, contained in the vector x in the

multilinear model, is also incorporated into X for transformation. After

transformation of X to Xtrans using PCA the extra row is removed again

from Xtrans and stored in the new transformed feature vector xtrans. Then

the very same regression is applied as in the multilinear model, but using

Xtrans instead of X and xtrans instead of x. The ideas behind that are:

• Co-occurring linear fragments are clustered together: Assuming that

most specialized linear fragments represent a whole family, or cluster,

of linear fragments, they are able to describe the data in a more con-

cise and human-accessible form. Furthermore, if linear fragments are

significant for triggering certain chemical mechanisms it is easier to

conclude a mechanical explanation for the toxic effect with clustering.

• Enabling the use of more linear fragments while reducing data size:

In the case that quite a lot linear fragments are strongly correlated,

PCA will be able to cover most of the data’s variance with only few

descriptors. While the ordinary multilinear model was restricted to

a maximum of 50 features due to efficiency reasons it is possible to

now use 500 or more features with PCA: by leaving out the most

insignificant principal components, covering “only” 99% of the data’s

variance, the data is reduced to an average descriptor space of 10 to

30 principal components.

In this section we learned how Lazar derives quantitative predictions

using automatically mined significances of linear fragments on the lowest

level. Building on those significances neighbours are detected and used in

three different models. In the following we will investigate the predictivity

of the different models and also compare them with the results of other

approaches.
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3 Results

This section gives details about the predictivity of quantitative Lazar pre-

dictions and relates them to results of others.

3.1 Crossvalidation

Two databases were used for the validation step, drawn from U.S. EPA’s

DSSTOX database [EPA], namely the EPA Fathead Minnow Aquatic Tox-

icity Database (EPAFHM) and the FDA Center for Drug Evaluation &

Research - Maximum (Recommended) Daily Dose Database (FDAMDD),

specifically versions v3b 617 10Apr2006 and v2b 1217 10Apr2006, respec-

tively. EPAFHM and FDAMDD are among the most popular public data-

bases for validation purposes.

For validation of Lazar Leave-One-Out Crossvalidation (LOO) was used.

With LOO, every single compound in the database is predicted once on the

basis of the rest of the compounds in the database. Put it another way,

for a database containing n compounds a prediction for an external test set

containing exactly one compound is performed n times, each time using the

remaining n− 1 compounds as training instances. Lazar takes care that for

every single prediction the significance of features of training compounds is

calculated from scratch achieving an unbiased predictionh.

However, there are several reasons why the number of predictions made

could differ from the number of instances in the databases and could also

vary from model to model.

• No neighbours to the query structure could be identified.

• Some compounds are contained multiple times in the databases. Lazar

hThis is an important point in LOO, which many implementations take not enough
care of.
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detects multiple instances by creating canonical descriptions of all

compounds and removes them from the database prior to the predic-

tion process.

• For the multilinear and the cluster model goodness-of-fit parameters

were made available by the regression component. Those were used to

exclude cases where no acceptable fit could be achieved by the model.

3.2 Perfomance and Applicability Domain

For LOO, performance was measured with R2, the coefficient of determina-

tion.

Definition 7: the Regression Sum of Squares is defined as

RSS =
∑

i

(predi − dbi)
2, (15)

and the Total Sum of Squares is defined as

TSS =
∑

i

(predi −
−
db)2, (16)

where i ranges over all compounds, predi is the Lazar prediction for com-

pound i, dbi is the database activity for compound i, and
−
db is the sample

mean of all database activities.

Then, R2 is defined as

R2 = 1− RSS

TSS
. (17)

It is also called the proportion of the variance explained by the model. R2

is one of the most common performance indeces in the field of predictive

toxicology. In the context of LOO R2 is also called Q2
LOO. In the context

of predictions made by Lazar, R2 is always the same as Q2
LOO.
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Predictive performance in Lazar is closely related to how similar the

neighbours are to the query structure. The best performance is obtained

for query compounds with a lot of very similar database structures. If this

is true for a query structure, then it is said to fall within the applicability

domain of the database. Conversely, if the neighbours only show a low

similarity, no meaningful prediction can be obtained for that structure.

Definition 8 (Lazar Confidence Index): For a prediction for structure

sq, the Lazar Confidence Index conf(sq) is the sample mean of the similar-

ities of the neighbours si used for the prediction i:

conf(sq) =
1

n

n∑
i=1

sim(si, sq)
4. (18)

Definition 9 (Lazar Applicability Domain): The Lazar Applicability

Domain of a database D is a real number ad(D), where 0 ≤ ad(D) ≤ 1.

A structure sq falls within the applicability domain of D if conf(sq) ≥
ad(D).

The applicability domain varies between different endpoints, because

different endpoints correspond to different functional mechanisms that re-

quire more or less chemical similarity. Different values for the applicability

domain in conjunction with LOO runs can help figuring out the value that

is most suitable for the current pair of database and endpoint to obtain

meaningful predictions.

Figure 7 summarizes Lazar prediction performance for the multilinear

and median model, figure 8 for the cluster model. The 20 most significant

features were used for regression in the multilinear model. In cases where

less than 20 neighbours could be identified, the number of features was iden-

tical to the number of neighbours (the number of neighbours corresponds to

iThe exponent of 4 ensures that distant (unsimilar) neighbours don’t get too much
weight.
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the number of rows and the number of features corresponds to the number

of columns in X). In the cluster model the 300 most significant features

were used. With PCA this data was compressed to mostly 5-20 principal

components (the information loss due to compression was limited to a max-

imum of 7.5% of the data’s variance). In cases where less neighbours than

principle components could be found the rows in X were inserted multiple

times to be able to use all principle components in the following multilinear

regression.

D (# predictions) ad(D) Model #(ad(D)) Q2
LOO

FDAMDD (1217)

0.8
multilinear 23 83%

median 23 82%

0.4
multilinear 89 78%

median 93 74%

0.2
multilinear 234 72%

median 238 66%

0.08
multilinear 522 70%

median 544 60%

0.0
multilinear 948 53%

median 1146 37%

EPAFHM (580)

0.3
multilinear 13 81%

median 12 80%

0.2
multilinear 34 73%

median 32 72%

0.1
multilinear 140 72%

median 141 71%

0.0
multilinear 574 36%

median 574 44%

Figure 7: Quantitative Lazar Performance for leave-one-out crossvalidation
using multilinear and median model. The first two columns give training
dataset and size along with different applicability domains. The following
columns give the performance results for the two different models.

Figures 9 and 10 show the plotted results for FDAMDD and for EPAFHM,

both using the multilinear model with applicability domains of 0.2 and 0.1,

respectively. The complete plots for all runs corresponding to figures 7 and

8 can be found in Appendix C.
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D (# predictions) ad(D) #(ad(D)) Q2
LOO

FDAMDD (1217)

0.8 17 -4%
0.4 78 46%
0.2 211 52%
0.08 478 54%
0.0 969 34%

EPAFHM (580)

0.3 6 1%
0.2 19 55%
0.1 119 53%
0.0 320 25%

Figure 8: Quantitative Lazar Performance for leave-one-out crossvalidation
using the cluster model. The first two columns give training dataset and
size along with different applicability domains. The following columns give
the performance results for the model.

A plotted result always consists of a pair of plots: The accuracy plot

(upper parts of figures 9 and 10) and the prediction plot (lower parts of

figures 9 and 10). The accuracy plots show R2 vs. confidence in a cumula-

tive fashion: The first data point to the left (with the highest confidence)

corresponds to the (single) prediction with the highest confidence, the sec-

ond data point to the two predictions with the highest confidences, and so

on. The prediction plots show predicted vs. database activities (−log val-

ues): The light-gray compounds do not fall into the applicability domain,

while dark-gray and black dots do. Black corresponds to the best confidence

values, dark grey to confidence values within the applicability domain. A

linear best fit line for the compounds in the applicability domain is drawn

on top of the plot. Obviously, it should lie closely to y = x, if there is no

systematic error in the predictions.

3.3 Predictivity

The multilinear model is superior to the median model in nearly all com-

binations of database and applicability domain. This can be easily seen

from figure 7. The two models show a parallel behavior in the accuracy
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Figure 9: Quantitative Lazar performance for FDAMDD, applicability do-
main set to 0.2, incorporating 234 compounds (multilinear model). Up-
per: Confidence vs. cumulative R2. Lower: Scatterplot od predicted vs.
database activity.
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Figure 10: Quantitative Lazar performance for EPAFHM, applicability do-
main set to 0.1, incorporating 140 compounds (multilinear model). Up-
per: Confidence vs. cumulative R2. Lower: Scatterplot od predicted vs.
database activity.
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plots, behaving nearly monotonousj. The cluster model fails to achieve ac-

curacy rates similar to the other two models. It is very unstable in the

beginning and does not exceed R2 rates of 60%. Even when reaching this

maximum (FDAMDD with applicability domain 0.08), the best-fit line in

the corresponding plot (see Appendix C) reveals a systematic error in that

the cluster model overestimates activities.

The mean similarity of the neighbours is used as a confidence index

of how reliable the predictions will be. With the multilinear model, this

index is obviously meaningful: with decreasing confidence, the predictions

get less accurate. The accuracy plots of figures 9 and 10 show that the Lazar

confidence index (see section 3.2) is quite a good estimator for prediction

quality. High confidence values are given most often to good predictions

while they are rare together with low confidence values. This is clearly

indicated by the cumulative R2 values and confidence is therefore usable as

a measure for the applicablity domain of a database.

In the case of the databases used here the most sensible values are

probably 0.08 for FDAMDD and 0.1 for EPAFHM. Using these values puts

522, respectively 140, compounds in the applicability domain.

3.4 Comparison to QSAR models

The following results for Fathead Minnow data were achieved using global

(Q)SAR models. For each result we will summarize the compounds and

features used, and the training and test set settings as given in the articles.

Short comments from the author of this paper are printed in italics at the

end of each summary.

jThe “jumpy” behavior of the cumulative R2 line at the beginning is the consequence
of too few predictions contributing values. As can be seen, this stabilizes with more data
points.



Quantitative Extension to Lazar 34

T. Öberg, 2004 [Ö04], Partial Least Squares Regression Öberg

payed special attention to the applicability domain. The 611 compounds

were closely investigated prior to model generation, and only 311 “were

selected on the basis of classification of their modes of action as narcosis

(narcotics modes I-III)”k. Those were then split into a training set of 208,

and an external test set of 103 compounds.

For inclusion in the final model 218 descriptor variables were selected

based on significance tests. This also resulted in an exclusion of nine fur-

ther compounds from the training set. Subsequent Principal Component

Analysis [CL04] yielded five latent variables covering 69.9% of the descrip-

tor variables’ variance. Partial Least Squares Regression method was used

for modeling.

Öberg reports a Q2 for leave-one-out crossvalidation for the training set

of 87.6% and 88.8% for the test set. He compares his results to a simpler

linear ANOVA model, which yielded R2
cal = 60.3%.

The manual preselection of compounds by a human expert according to

mode of action is still common using QSAR models. As a global model

without distance weighting is used the training compounds and the query

structure must be congeneric. However, this is error prone (see section

1.3). Lazar automatically mines congeneric compounds.

E. Papa et.al. [PVG05], Multilinear Regression A set of quantita-

tive features obtained from the data were used for Multiple Linear Regres-

sion. The features were calculated using the DRAGON software, including

1D, 2D and 3D information. The set was reduced by genetic algorithm

subset selection. The compounds were classified a priori into narcotics,

polar-narcotics, reactive or specific acting compounds (MOA1 - MOA4, re-

spectively). Special attention was given to the logP feature which describes

kThese modes correspond to LC50 values of < 100 mg L−1, meaning acutely toxic.
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the octanol-water partition coefficient. Different types of logP were used

for modeling: AlogP, MlogP and ClogP (only ClogP values are reported in

figure 11).

The authors report Q2
LOO values for the 3x4 setting logP-type vs. MOA-

type. MOA1-based classification yields much higher Q2
LOO rates, up to 92%,

compared to classification based on all compounds.

Preselection according to mode of action (different narcotics) is done

again. Additionally, logP is used as a feature which is a physicochemical

descriptor known to exhibit a nearly linear relation to narcotic modes. Lazar

uses only structural information.

D.V. Eldred et.al. [EWJK99], Multilinear Regression, Compu-

tational Neural Network (CNN), Genetic Algorithm The authors

used 287 compounds as training set, 88 compounds were divided in two

groups for crossvalidation and prediction in the case of CNN, or both for

external prediction in the case of multilinear regression. 242 topological

descriptors were generated from connection table information yielding only

structural properties. They were reduced to 123 by objective feature selec-

tion. Simulated annealing was used for the multilinear model.

The authors report a correlation value for the prediction set in the

multilinear case: R = 0.86 (R2 = 0.74). The other methods show better

RMSE values, but no R values are reported.

The multilinear model is similar to Lazar. It uses only structural prop-

erties computed from the compounds.

S.P. Nicolescu et.al. [NAHL04], Probabilistic Neural Network A

probabilistic neural network was trained for 886 compounds obtained from

EPA’s AQUIRE database. They were randomly split into 800 training and

86 test compounds. The features consisted of structural information, i.e.
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the number of occurences of certain groups similar to [MY01]. Two models

werde learned based on a group contribution method of which the better

one is listed in figure 11.

Considering the fact that no preselection has been done this is an im-

pressive result. However, neural networks suffer frequently from overfitting

and a lot of manual tweaking can be done here.

M. Pavan et.al. [PNW06], Multilinear Regression A set of quan-

titative features obtained from heterogenous data was used for multilin-

ear regression. Similar to [PVG05], the features were calculated using the

DRAGON software, included 1D, 2D and 3D information and were reduced

by genetic algorithm subset selection. The model was externally validated

against 57 chemicals. The authors report Q2
LOO = 80.1% and Q2

ext = 72.1%.

Again a good result, using quantitative features. Quantitative features

are a valuable feature and could be part of a future release of Lazar.

Summary Figure 11 shows the QSAR results in compact form. Q2
LOO is

defined as R2 obtained through leave-one-out crossvalidation, and Q2
ext is

defined as R2 on an external test set.

Method Q2
LOO Q2

ext R FT LS

PLSR [Ö04] 88% (208) 89% (103) - phys-chem. moa
MLR [PVG05] 67% (469) - - topol. moa
MLR [EWJK99] - - 86% (88) struct. all
NN [NAHL04] - 78% (86) - struct. all
MLR [PNW06] 80% (408) 72% (57) - topol. all

Figure 11: Comparison of Results. The numbers in round brackets indi-
cate the number of predicted compounds. Shortcuts: PLSR: Partial Least
Squares Regression, MLR: Multilinear Regression, NN: Neural Network,
FT: feature type, LS: learning/prediction set composition [’moa’: prese-
lected compounds according to their mode of action; ’all’: no preselection]
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For the EPAFHM database we have seen the work of others trying

to accomplish the task to predict activity using global models. The ap-

proaches show a variety of techniques for model building and feature se-

lection: multilinear regression is a common approach, eventually combined

with preselection according to mode of action, but also computational neu-

ral networks, which are able to model arbitrary functions, but suffer easily

from overfitting. Many different types of features were used, reaching from

computed structural and physical properties to physicochemical descriptors

drawn from literature.

The purpose of this section was to report the predictive performance of

Lazar on two different, frequently used databases and the performance of

others trying to accomplish prediction by different (Q)SAR models. The

next section addresses conceptual aspects, discusses predictive performance

and highlights some crucial points in the Lazar implementation that are

important for runtime performance and precision.
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4 Discussion

This section adresses important conceptual issues, discusses predictive per-

formance and explains technical implementation details.

4.1 Conceptual Aspects

Lazar is a hybrid conception of both lazy learning and (Q)SAR methods.

It is an instance-based method because it takes the query instance and its

neighbours, weighted by similarity, into account when building a model.

It also employs classical SAR methods by doing multilinear regression on

qualitative data, namely the (weighted) presence or absence of fragments.

Lazar takes into account the important issues about lazy learning meth-

ods (see section 1.2):

• Lazar supports the extraction of all linear fragments contained in the

database beforehand so that their occurences are known when the

program starts. This enables a fast calculation of the fragments’ sig-

nificance values and of the neighbours.

• The more fragments a compound shares with the query structure the

greater the similarity will be between the two (if they are the same it

will be 1.0). The less fragments they share the smaller the similarity

will be (if they do not share any features it will be 0.0). This is

(inversely) related to euclidean distance.

• Only the most significant features are used to determine similarity. In

the cluster model they are also uncorrelated. The accuracy plots for

the median and multilinear model show that similarity is a meaningful

confidence index. It can be assumed that it is also a meaningful

distance measure.
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• Weighting by similarity allows for using in principle all training com-

pounds for each prediction. By calculating the weighted median, or

weighting each row in X in the multilinear and cluster model, simi-

larity is taken into account in all models.

• The ordering of features satisfies the constraint about using relevant

information. Only the most significant features are used for supplying

X with values. In the cluster model the features are also decorrelated.

4.2 Predictive Performance

The comparison of Lazar performance to QSAR approaches for the Fathead

Minnow database (see section 3.4) show that Lazar ranks with recent mod-

els. R2 results between 70% and 80% in the different applicability domains

put it on a competitive level, especially with FDAMDD, where approxi-

mately half of the compounds could be classified with R2 rates of about

70%.

One would have expected for the cluster model to achieve accuracy rates

at least comparable to the multilinear model, since it is in principle supe-

rior to the latter, employing a much more meaningful feature space based

on the principal components of the data. Additionally, it uses ten times

the amount of features incorporating much more potentially meaningful de-

scriptors. Additional runs using 500 or more features and/or a compression

loss of less than 2.5% yielded no substantial increase of performance. This

suboptimal behavior may be related to the following findings:

• In the matrix X of the multilinear model, each entry is basically a

qualitative entry, i.e., it states whether the fragment is present in the

compound or not although it is weighted by significance (see section

2.4.2). Normally, with PCA, one would expect to have real quantita-

tive entries.
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• The feature space (fragments) is very high-dimensional compared to

the number of cases (neighbours), which make up the rows in X. Often

the number of fragments is multiple times the number of neighbours,

which causes a sparsity in the input data for the PCA.

• In the multilinear model, the locally weighted regression uses only the

20 most significant fragments out of usually several hundreds (we are

looking at all fragments contained in any of the neighbours and the

query structure). As a consequence X features many zeroes indicat-

ing a missing fragment. For multilinear approximation the many ze-

roes are an advantage, effectively reducing the number of dimensions.

When using PCA in the cluster model X contains several hundred

fragments. Although PCA transforms X to a new descriptor matrix

Xtrans with much less dimensions, the zeroes aren’t retained.

• As can be seen from figure 8 quite a few compounds had to be ex-

cluded from the LOO run. This happened because the multilinear

approximation to the PCA-transformed data was too bad, yielding

standard errors of the fit above a threshold of 2.0. This didn’t happen

for the multilinear model.

It seems that for several quite subtle reasons PCA damages linear relations

and that it can’t make up for that flaw with the advantage of a broader

feature space. It rather seems that the presence or absence of the 20 most

significant fragments (which may be correlated with each other) suffice to

make up quite a good feature space for multilinear regression.

4.3 Technical Implementation

Here we inspect several important implementational aspects of model build-

ing and prediction concerning mainly numerical issues.
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All models strip redundant compounds from the training set. It is pos-

sible that the same compound occurs repeatedly in the database as the

SMILES notation is not canonical. Therefore, duplicate compounds are re-

moved from the training set before the determination of neighbours begins.

To this end Lazar uses OpenBabel functionality to convert SMILES code

into InChi format which is intended to be canonical [InC].

4.3.1 Multilinear Model

Once the neighbours have been determined, weighted linear regression is

performed to obtain a model. We compute the best-fit parameters c of the

model y = Xc for the observations y with weights w and the matrix of

predictor variables X as declared in section 2.4. The variance-covariance

matrix of the model parameters is estimated from the scatter of the obser-

vations about the best-fit. Lazar returns the sum of squares of the residuals

per degrees of freedom (χ2/df) from the best-fit and prints them out (see

Appendix B).

For a prediction not necessarily all compounds count as neighbours:

there is a cutoff due to efficiency reasons at a similarity value of 0.3 (see

section 2.3). In most cases, the number of neighbours ranges between 20

and 60, but Lazar makes a prediction even if there is only one neighbour to

the query structure. This does not necessarily give a poor prediction.

The best-fit is found by singular value decomposition of the matrix

X using a modified Golub-Reinsch singular value decomposition (see also

Cluster Model) algorithm with column scaling to improve the accuracy of

the singular values. Any components which have zero singular value (to

machine precision) are discarded from the fit. For numerical reasons it was

necessary to limit the number of fragments (columns) to the number of rows

(neighbours) in X, because the regression component demands at least as

many rows as columns. Therefore, there were also predictions made with
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less than 20 fragments.

4.3.2 Cluster Model

In the cluster model, there are different ways of determining the principal

components of the data. Lazar uses an approach that is well known from

linear algebra.

Suppose M is an m-by-n matrix whose entries are real numbers. Then

there exists a factorization of the form

M = UΣV ∗, (19)

where U is an m-by-m unitary matrix, the matrix Σ is m-by-n with nonnega-

tive numbers on the diagonal and zeros off the diagonal, and V* denotes the

conjugate transpose of V, an n-by-n unitary matrix. Such a factorization

is called a Singular-Value Decomposition (SVD) of M. Typical SVD imple-

mentations such as the ones used in Lazar have quadratic computational

complexity.

The singular value decomposition is very general in the sense that it

can be applied to any m-by-n matrix. SVD is related to eigenvalue decom-

position: in the special case, that M is a Hermitian matrix which is positive

semi-definite, i.e., all its eigenvalues are real and non-negative its singular

values and singular vectors coincide with its eigenvalues and eigenvectors

and can be found out by the above factorization.

The calculation is done by a singular value decomposition of the zero-

centered data matrix, not by using the covariance matrix. This is generally

the preferred method for numerical accuracy. The main functions used are

the LAPACK routines of the Fortran language, DGESDD and ZGESVD.
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4.3.3 Computational Complexity

Lazar is essentially a step-by-step procedure (see figure 4). Assuming that

linear fragments have been extracted beforehand, i.e., the occurences of lin-

ear fragments in database compounds are known, the prediction process for

a given query instance consists of three main steps: determining significant

features, determining neighbours and finally computing a prediction value.

The first two steps are covered by the UML diagram in Appendix D.

1. Determining significant features consists of gathering together the

step-size function data for the KS-test, requiring linear time to ex-

tract all activity values and quadratic time to extract activity values

for all compounds that contain the respective fragment. The KS-test

itself requires linear time and some constant operations for all frag-

ments.

2. Determining neighbours consists of calculating similarity values for all

training compounds and selecting those with similarity greater than

0.3. This is implemented as to successive loops, each running in linear

time.

3. Before the actual prediction starts, Lazar sorts neighbours and/or sig-

nificant features using library routines in quadratic time. The com-

plexity for the actual prediction depends on the model used. Calculat-

ing the median requires only linear time. Multilinear regression takes

quadratic time using SVD, as does PCA. Therefore, the median is of

linear, multilinear and cluster model are of quadratic complexity.

In summary, Lazar is of quadratic complexity in the size of the training set

(O(n2)).

The next section walks through an example prediction for a specific

compound showing neighbours and their similarity values.
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5 Practical Applicability: An Example

In this section the application of Lazar is demonstrated in a transparent

way for an example compound. Lazar fulfills the requirements for (Q)SAR

models as demanded by EU’s REACH legislation.

Example: We have a look at a specific prediction from the FDAMDD

database LOO run performed with the multilinear model. Lazar identifies

15 neighbours for the query structure O=C1NC(=O)NC(=O)C1(CC=C)CC=C.

Some of its neighbours are depicted in figure 12. Figure 13 shows the struc-

ture graphs.

# SMILES Similarity Activity

1 N1C(=O)NC(=O)C(CC=C)(C(C)C)C1=O 1.0 0.426511
2 C1(=O)N(C)C(=O)NC(=O)C1(C(C)C#CCC)CC=C 0.902632 0.30103
3 C1(=O)C(CC=C)(CC(C)C)C(=O)NC(=O)N1 0.878689 0.69897
5 C1(=O)C(CC)(CC)C(=O)NC(=O)N1 0.730738 1.0
8 C1(=O)C(C(C)CC)(CC)C(=O)NC(=O)N1 0.655752 0.30103
9 C2(=O)NC(=O)C(C1=CCCCC1)(CC)C(=O)N2 0.468516 0.824126

Figure 12: Some neighbours to the query structure, along with their simi-
larity and activity values

The neighbours share a common core structure, namely the ring struc-

ture, and up to three double bonds with oxygen atoms. With decreasing

similarity other fragments occur, attached to the ring, added to or replacing

other fragments.

All linear fragments have a significance value attached indicating the

importance towards triggering the endpoint, in this case the recommended

maximum daily dose of a chemical (log values). Lazar uses the linear frag-

ments, activities and similarities of the query structure and/or the neigh-

bours to obtain a weighted multilinear model as described in section 2.4.2.

Figure 14 shows the prediction results. Lazar outputs the χ2 value and

the standard error of the fit. Those goodness-of-fit indicators tell us how
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1.0 0.902632 0.878689

0.730738 0.655752 0.468516

Figure 13: Some neighbours to the query structure (top), along with their
similarity values. The depicted compounds are arbitrarily rotated (rotation
is not encoded in the SMILES standard).
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well the data could be fitted by the multilinear model. In our example

the fit is quite good showing a low χ2 value. Indeed the prediction fits

the database activity quite well as indicated by the confidence. It is much

greater than the applicability domain of 0.08 for this data set (the query

structure falls within the applicability domain).

χ2 0.0183677
standard error of the fit 0.449387

prediction 0.532071
confidence 0.284365

database activity 0.522444

Figure 14: Prediction results for the query structure

The Lazar algorithm provides therefore an unambiguous algorithm to-

gether with transparent information how the prediction was achieved. Chem-

ical experts can use the neighbours to identify or confirm substructures

relevant for the endpoint under investigation. We shall now see, how this

corresponds to the requirements for (Q)SAR models, put forth by the Eu-

ropean Union.

On december 18, 2006, the European Union (EU) decided to establish

a regulation “concerning the Registration, Evaluation, Authorisation and

Restriction of Chemicals (REACH)” which was put into force june 1, 2007

[REA06]:

The REACH regulation gives greater responsibility to in-

dustry to manage the risks from chemicals and to provide safety

information on the substances. Manufacturers and importers

will be required to gather information on the properties of their

substances, which will help them manage them safely, and to

register the information in a central database. A Chemicals

Agency will act as the central point in the REACH system:

it will run the databases necessary to operate the system, co-
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ordinate the in-depth evaluation of suspicious chemicals and run

a public database in which consumers and professionals can find

hazard information.

Not only new substances fall under the restrictions of REACH, but also

known substances, even those that have been in use for a long time. The

industry will face a huge task of testing and classifying all those substances.

In a recent study by the European Chemical Bureau (ECB) it has been

estimated that REACH will require 3.9 million additional test animals, if

no alternative methods are accepted. Various toxicity types, in vivo muta-

genicity and carcinogenicity are the endpoints that will require the largest

number of test animals within REACH because no alternative in-vitro as-

says are available. The same study shows that it is possible to reduce the

number of test animals significantly by utilizing existing experimental data

in conjunction with (Q)SAR models. It is generally accepted that computer-

aided classification will speed up the process, cut down on the costs and help

avoiding excessive in-vivo testing.

The ECB has defined criteria for (Q)SAR models which where originally

set forth by the Organisation for Economic Cooperation and Development

(OECD): A QSAR model should be associated with

• a defined endpoint,

• an unambiguous algorithm,

• appropriate measures of goodness-of-fit, robustness and predictivity,

• a mechanistic interpretation, if possible.

Lazar clearly fulfills the first requirement, as every training database cor-

responds to a specific endpoint. Model building and prediction has been

discussed in section 2 and is fully governed by an unambiguous algorithm.



Quantitative Extension to Lazar 48

In the multilinear model, a goodness-of-fit statistic is provided for each

prediction in the form of a χ2 value per degree of freedom (see Appendix

B). Predictions are generally robust because of the distance weighting in

instance-based methods, i.e. a local model is not easily affected by distant

compounds. Small changes in the database, for example, will only influ-

ence a small number of predictions. Predictivity measures for two popular

databases were given in section 3.1.

Furthermore, Lazar derives its predictions (rational conclusions) au-

tomatically from existing experimental data and presents them in an in-

terpretable and traceable manner. A mechanistic interpretation can be ob-

tained from the common substructures between the query structure and the

neighbours: they are significant for the endpoint under inspection and can

be used by human experts to identify toxicity mechanisms. The confidence

index defines an applicability domain with high predictivity, which can, af-

ter thorough evaluation by a toxicological expert, be used as a replacement

for in-vivo bioassays. The expert may conclude that the prediction is reli-

able enough to omit further bioassays if there is a high prediction confidence

and neighbours that probably act by similar mechanisms.

For the future, it will be of great importance for toxicological experts

to be able to compare different (Q)SAR models in an objective validation

framework. This will give the researcher the possibility to reliably vali-

date prediction results, as comparable results from different models gener-

ally increase stability and reliability in data mining approaches. To this

end, important steps forward have to be taken in the predictive toxicol-

ogy community: a common database format (adhering to databases with

different access policies and legal status), systematic data quality (incorpo-

rating chemical structures) and the unambiguous identification of chemicals

to name only a few important ones.
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6 Conclusion

6.1 Summary

We have seen that instance-based learning methods are well suited for het-

erogenous training databases because they bypass the problem of fitting a

model to a set of non-congeneric compounds (i.e. compounds that act by

different chemical mechanisms). The extent to which this happens depends

of course on the features selected and the distance metric applied. Struc-

tural properties naturally relate to chemical mechanisms and are therefore

a good choice. They can also be mined from the data in a complete and sta-

tistically sound fashion with corresponding significance values and without

the need to resort to literature.

Using (linear) fragments as structural information often yields an enor-

mous amount of descriptors for a chemical structure. Lazar identifies the

relevant features with statistical tests, which guarantees completeness. It

also assigns a significance value to each fragment.

Lazar derives predictions using k-nearest-neighbour techniques. The

distance metric for compounds (similarity) builds directly on the significance

of linear fragments and is an obvious way to extend the structural approach.

Since distance weighting is used, the number of neighbours can be quite

large, limited solely by computational aspects such as runtime and memory.

The neighbours can be inspected by human experts, who in turn can pin

down physicochemical mechanisms that may trigger the endpoint under

investigation.

Three models have been developed and evaluated using leave-one-out

crossvalidation for two popular, publicly available databases. All models

are using the same confidence index to describe the reliability of their

predictions. Concerning accuracy, the multilinear model shows a consis-
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tent improvement over the median model. Here, accuracy decreases nearly

monotonically together with confidence, which is a clear indicator for the

stability of the distance metric. The cluster model could not make up for

the information loss due to compression with the incorporation of more

fragments. The transformed data seems to lack linear relations for which

possible reasons have been discussed.

It has been shown that Lazar fulfills the reqirements specific to instance-

based learning approaches. Other current (Q)SAR models have been re-

ported and Lazar ranks with these approaches. The basic requirements

for industrial and/or regulatory use have been considered and it has been

shown that Lazar meets those requirements.

6.2 Future Work

The next generation of Lazar is supposed to additionally support quantita-

tive features, which will hopefully further improve accuracy and also provide

a more usable basis for principle components analysis. The quantitative fea-

tures should also be mined automatically and completely using data mining

methods.

A fast and convenient graphical user interface is to be designed. There

are two versions, suitable for different scenarios: a web interface accessible

with any graphical browser for beginners and occasional users and a binary

program for a local workstation for heavy use and confidential data.

A common validation framework for different (Q)SAR models will make

it easy to compare results of different approaces quickly and easily. The

author wants to participate in this process and Lazar will offer an interface

to such a framework as soon as a definition exists.
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A Installation

Use the following instructions to install Lazar using the multilinear model

as prediction model.

These are build instructions for Ubuntu, a Debian-based Linux distribution,

release 6.10 (Edgy Eft). For other Debian-based distributions the process

should differ only slightly.

A.1 Preliminaries

To compile Lazar, install subversion and g++ compiler along with helper

programs.

box:~$ sudo aptitude install subversion build -essential

lazar-tools is a collection of programs that come with Lazar and perform

statistical evaluations on Lazar LOO data. I assume you have PERL installed

already. Now install the XML parser.

box:~$ sudo perl -MCPAN -e shell
cpan > install Bundle ::CPAN
cpan > reload cpan
cpan > install XML:: Parser
cpan > quit

We also need software from the R Project for Statistical Computing.

box:~$ sudo aptitude install r-base

A.2 Libraries

GNU Scientific Library (GSL). Lazar uses GSL routines and data structures

internally for many purposes.
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box:~$ sudo aptitude install libgsl0 -dev

OpenBabel, the open source chemistry toolbox: Compile from source.

box:~$ wget http :// mesh.dl.sourceforge.net/sourceforge/ \
openbabel/openbabel -2.0.1. tar.gz

box:~$ tar zxvf openbabel -2.0.1. tar.gz && cd openbabel -2.0.1

Follow the directions given in INSTALL. Create some symbolic links:

box:~$ cd /usr/local/include/openbabel -2.0
box:/usr/local/include/openbabel -2.0$ sudo find \

-name ’’*.h’’ -exec ln -s {} \;

A.3 Compiling Lazar

Check includefiles and libraries:

the GSL includefiles should reside in /usr/include/gsl/, the Openbabel

includefiles in /usr/local/include. The shared library libopenbabel.so

should be found in /usr/local/lib and libgslcblas.so and libgsl.so

in /usr/lib/. If all looks good, check out the Lazar source code from the

subversion repository and compile:

box:~$ svn checkout svn :// www.in-silico.de/lazar /\
branches/quantitative

box :~/ quantitative$ cd quantitative/ && make

If you experience problems, check the Makefile: Check the path to the

OpenBabel includefiles in the CXXFLAGS variable. The default is:

CXXFLAGS = -g -O2 -I/usr/local/include/openbabel -2.0/ -w

After successful compilation, you should have the executable lazar in the

current directory.
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A.4 Running Lazar

To run Lazar using the multilinear model follow the steps outlined below.

Change to the directory where you want LOO to be run. Example: you want

to run Lazar on the FDAMDD dataset. First extract all linear fragments

from the database, then run Lazar.

box :~/ quantitative$ cd data/fdamdd060410/data
box :~/ quantitative/data/fdamdd060410/data$ make
box :~/ quantitative/data/fdamdd060410/data$ cd ../ validation
box :~/ quantitative/data/fdamdd060410/validation$ ./ run_lazar

Before running make or run lazar, check the Makefile in the data direc-

tory, specifically the TOOLDIR variable, for the correct path to the lazar-tools

directory. Check run lazar in the validation directory, specifically the

the LAZDIR variable, for the correct Lazar root directory (default:

/home/<user>/quantitative).

The run can take several hours. When finished, Lazar will have created some

files, the most important being .loo (contains output produced directly by

the Lazar binary) and .summary (contains error statistics). Accuracy and

prediction plots will also have been created. See Appendix B.

Adjust the file ad.pl in the current directory to try different applica-

bility domains (set the variable ad threshold).
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B File Formats

B.1 Input

Lazar uses several input files, which together form the training database:

• .smi: contains a row for each compound in the database in SMILES

format. Each compound is assigned a unique number. Example:

1691 C1=CC(C=O)=CC(OC)= C1OCCCCCC
1692 C1(OC)=C([N+]([O-])=O)C(C=O)=CC(Br)=C1O
...

• .linfrag: contains a row for each fragment occuring in the database

in SMARTS format. Each fragment is assigned a list with the com-

pound numbers it occurs in. This file corresponds to step 1. in the

main Lazar workflow (see figure 3). As this information never changes

for a given database, it can be extracted beforehand for efficiency rea-

sons. Example:

C [ 0 1 3 4 5 6 7 ... ]
c [ 0 1 3 4 5 6 7 ... ]
...

• .act: contains a row for each compound in the database, identified

by it’s number. Each compound is assigned it’s quantitative activ-

ity value, together with a text string identifying the endpoint of the

experimental source. Example:

1691 LC50_mg 2.67
1692 LC50_mg 73.3
1694 LC50_mg 1.92
...
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B.2 Output

Lazar outputs several files in XML format:

• .loo: When LOO is performed, this file receives all the data for every

prediction made. For every prediction, after identifying the compound

by line number, id and SMILES code, it lists all neighbours; after

that follow the prediction results, i.e. database activity, confidence,

prediction and chi2 value of the fitl. Example:

<compound >
<endpoint >LC50_mg </endpoint >
<line_nr >1</line_nr >
<id >1691 </id>
<smiles >C1=CC(C=O)=CC(OC)=C1OCCCCCC </smiles >
<neighbour >

<similarity >0.59375 </ similarity >
<line_nr >262 </ line_nr >
<id >1968 </id >
<smiles >O=CC1=CC(OCC)=C(O)C=C1 </smiles >
<activity >1.9425 </ activity >

</neighbour >
[ ... more neighbours ...]
<chi_sq >0.02587 </ chi_sq >
<prediction >1.38351 </ prediction >
<confidence >0.0443589 </ confidence >
<db_activity >0.426511 </ db_activity >

</compound >

lSome additional information has been omitted for a better overview



Quantitative Extension to Lazar 56

• .summary: Contains the performance indices for LOO. It gives the

number of predictions, root mean-squared error (rmse) and R2 coef-

ficient for all predictions and for the predictions in the applicability

domainm. Example: After that follows - in descending order of con-

<summary >
<all >

<nr_err >574</nr_err >
<rmse >0.94 </rmse >
<r_sq >0.44 </r_sq >

</all >
<within_ad >

<nr_err >67</nr_err >
<rmse >0.76 </rmse >
<r_sq >0.71 </r_sq >

</within_ad >

fidence - the errors for the predictions. This is used to calculate the

regression sum of squares. Example:

<cumulative_accuracies >
<compound >

<id >621 </id >
<smiles >O=C(C(C1=CC=C(C=C1)Cl)[...] </ smiles >
<prediction > -3.72125 </ prediction >
<confidence >0.763393 </ confidence >
<db_activity > -2.29243 </ db_activity >
<error >1.42882 </ error >

</compound >
[ ... more predictions ... ]

</cumulative_accuracies >

C Detailed Validation Results

The following provides detailed validation results, broken down to models

and applicability domains. Shown are plots of confidence vs. cumulative

R2 and of predicted activity vs. database activity.

mSome additional information has been omitted for a better overview
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C.1 EPAFHM

Figure 15: Multilinear model (top), median model (middle) and cluster
model (below) for EPAFHM with applicability domain 0.1
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Figure 16: Multilinear model (top), median model (middle) and cluster
model (below) for EPAFHM with applicability domain 0.2
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Figure 17: Multilinear model (top), median model (middle) and cluster
model (below) for EPAFHM with applicability domain 0.3
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C.2 FDAMDD

Figure 18: Multilinear model (top), median model (middle) and cluster
model (below) for FDAMDD with applicability domain 0.08
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Figure 19: Multilinear model (top), median model (middle) and cluster
model (below) for FDAMDD with applicability domain 0.2
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Figure 20: Multilinear model (top), median model (middle) and cluster
model (below) for FDAMDD with applicability domain 0.4
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Figure 21: Multilinear model (top), median model (middle) and cluster
model (below) for FDAMDD with applicability domain 0.8
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D Lazar Prediction Process

The following UML diagram shows the Lazar algorithm, detailing the cal-

culation of significant features (first page) and neighbours (second page).
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